问答模型综述

定义

智能问答(Question Answer,QA)智能问答系统就是基于大量语料数据,通过数学模型,通过相关编程语言实现的一个能够和人类进行对话,解决问题的一个软件系统。

研究的基本问题

自然语言问题

将自然语言问题大致分为七类,事实类(factoid)问题、是非类(yes/no)问题、定义类(definition)问题、列表类(list)问题,比较类(comparison)问题、意见类(opinion)问题和指导类(how-to)问题.

(1) 事实类问题对应的答案是现实世界中的一个或多个实体。 例如,问题Where was Barack Obama born?对应的答案是地点类型实体 Honolulu。事实类问题通常比较客观,适合基于知识图谱或文本生成问题对应的答案。

  • 基于信息检索的事实类问答:基于 IR 的事实类问答的过程:问题处理、段落检索和排名和答案抽取。
  • 基于知识的问答 Knowledge-base Question Answering)
    (2) 是非类问题对应的答案只能是yes或者no。例如,问题Is sky blue?对应的答案是Yes;问题Is sky green?对应的答案是No。 是非类问题在搜索引擎查询日志中的占比较高,适合基于知识图谱或常识知识库进行推理并生成问题对应的答案。

(3) 定义类问题对应的答案是关于问题中提到的某个实体的术语解释。 例如,问题 What does AI mean?对应的答案是AI这个术语的解释。 定义类问题的提问模式通常较为固定,适合基于知识图谱、词典或文本生成问题对应的答案。

(4) 列表类问题对应的答案通常是一个集合。例如,问题 List of highest mountains on earth 对应的答案是一组山峰的名字。 和事实类问题类似,列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值