dplyr-distinct 行记录去重细节处理

本文介绍了R语言dplyr包中用于数据去重的方法,包括distinct函数及其参数用法,如指定列去重和保持所有列。同时,展示了如何结合group_by和slice函数实现更灵活的去重策略,如随机保留一条重复记录、保留第一条或最后一条记录,以及按特定列排序后去重。这些方法对于数据预处理和清洗非常实用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

dplyr::distinct对数据框去重,该方法默认保留重复记录的第一条记录

通过指定一列或多列进行去重

df %>% distinct( `column1` , `column2` ,  `···`, .keep_all = T) #.keep_all表示去重后返回数据框的所有列向量

通过基于所有列向量去除重复行记录

df %>% distinct() 

此外,除了使用distinct函数处理重复行记录,在dplyr管道中,还推荐使用group_by配合使用 slice实现更细致的去重操作,如:

  • 随机保留1条重复行记录
df %>% group_by(`column1` ,  `···`)  %>% slice_sample(n = 1) %>% data.frame()
  • 保留第1个重复行记录
df %>% group_by(`column1` ,  `···`)  %>% slice(1) %>% data.frame()
  • 保留最后1个重复行记录
df %>% group_by(`column1` ,  `···`)  %>% slice( n() ) %>% data.frame()
  • 根据一列向量进行分组排序再去重保留符合要求的记录
df %>% group_by(`column1`) %>% arrange(desc(`column3`)) %>% slice(1) %>% data.frame()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

倪桦

有帮助的话请杯咖啡吧,谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值