最大子序和(R)

题目:

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
# 最大子序和,穷举法
# 这个也有好处,就是适用性
# 坏处就是时间复杂度以及消耗资源

c <- c(-2,1,-3,4,-1,2,1,-5,4)


max_zxl <- function(c){

  # 放一个储存结果的re_sum
  re_sum <- NULL
  for (i in 1:length(c)) {
    for (j in 1:length(c)) {
      if(i >= j) {

      # 把所有可能的结果都合并放一起。
      re_sum <- cbind(re_sum,sum(c[i:j])) 
      
      }else{
        
      }
    }
  }
   
  # 返回需要的最大值
  return(max(re_sum))
}

#试验测试结果
max_zxl(c)

结果:

It's ok.

 

 

但是这个缺点也很明显,如果体量上去会很耗资源。

下面提供另外一种算法吧。


# another easy way
# 这边会存在一个问题的,关于正负的问题

max_zxl_2 <- function(c){

  # 做一个逻辑判断,是否都是负数
  if (all(c < 0)) {
    return(max(c))
    
  }else{

    # max_sum为最后的结果,this_sum为中间过程需要
    max_sum = this_sum = 0
    for (i in 1:length(c)) {
      
      # 累加this_sum
      this_sum <- this_sum + c[i]
      
      # if 判断控制流语句
      if(this_sum > max_sum){
        max_sum <- this_sum
      }else if(this_sum < 0)
        this_sum <- 0
      
      
    }
    
    # 返回需要的结果max_sum
    return(max_sum)
 
  }
  
}


测试结果也是一样的,但是复杂度会降低:

 

 还有一个分治法,这个还没研究过,改天看看,试试。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值