POJ1077 HDU1043 Eight 八数码第四境界 双向广搜 康托展开 逆康托

Eight
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 30632 Accepted: 13332 Special Judge

Description

The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as: 
 1  2  3  4 

 5  6  7  8 

 9 10 11 12 

13 14 15  x 

where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle: 
 1  2  3  4    1  2  3  4    1  2  3  4    1  2  3  4 

 5  6  7  8    5  6  7  8    5  6  7  8    5  6  7  8 

 9  x 10 12    9 10  x 12    9 10 11 12    9 10 11 12 

13 14 11 15   13 14 11 15   13 14  x 15   13 14 15  x 

           r->           d->           r-> 

The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively. 

Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and 
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course). 

In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three 
arrangement. 

Input

You will receive a description of a configuration of the 8 puzzle. The description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle 
 1  2  3 

 x  4  6 

 7  5  8 

is described by this list: 
 1 2 3 x 4 6 7 5 8 

Output

You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line.

Sample Input

 2  3  4  1  5  x  7  6  8 

Sample Output

ullddrurdllurdruldr

题解:

经典的八数码问题,这里先用第四境界的算法做一下。

双向广搜就不再赘述了,说说hash函数,用的是康托展开,逆推hash的话用逆康托展开

康托展开函数:X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0!。

逆康托展开的话反推就行了,很简单。


#include <cstdio>
#include <cstring>
#include <string>
#include <set>
#include <queue>
#include <algorithm>
#include <map>
#include <stack>
using namespace std;

struct Node {
    int status;
    int pos;

    Node(int s = 0, int p = 0) {
        status = s;
        pos = p;
    }
};

const int MAXN = 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 + 10;
int jie[10] = {1, 1};
int dirx[] = {-1, 1, 0, 0};
int diry[] = {0, 0, -1, 1};
int father[2][MAXN];
bool vis[2][MAXN];
queue<Node> q[2];

bool InRange(int x, int y) {
    return x >= 0 && x < 3 && y >= 0 && y < 3;
}

int Hash(string s) {
    int ans = 0;
    for (int i = 0; i < 9; ++i) {
        int  rev = 0;
        for (int j = i + 1; j < 9; ++j) {
            if (s[i] > s[j]) ++rev;
        }
        ans += rev * jie[8 - i];
    }
    return ans;
}

string RevHash(int val) {
    string ans = "";
    bool tag[10] = {};
    for (int i = 0; i < 9; ++i) {
        int tNum = val / jie[8 - i] + 1;
        for (int j = 1; j <= tNum; ++j) {
            if (tag[j]) ++tNum;
        }
        val %= jie[8 - i];
        ans += tNum + '0';
        tag[tNum] = true;
    }
    return ans;
}

void PutPath(int mid) {
    stack<char> path;

    int a = mid;
    while (father[0][a] != a) {
        string s = RevHash(a);
        string fs = RevHash(father[0][a]);

        int pos, fpos;
        for (int i = 0; i < s.size(); ++i) {
            if (s[i] == '9') pos = i;
            if (fs[i] == '9') fpos = i;
        }

        if (pos / 3 == fpos / 3) {
            if (pos % 3 < fpos % 3) {
                path.push('l');
            } else {
                path.push('r');
            }
        } else {
            if (pos / 3 < fpos / 3) {
                path.push('u');
            } else {
                path.push('d');
            }
        }
        a = father[0][a];
    }

    while (!path.empty()) {
        putchar(path.top());
        path.pop();
    }

    int b = mid;
    while (father[1][b] != b) {
        string s = RevHash(b);
        string ss = RevHash(father[1][b]);

        int pos, spos;
        for (int i = 0; i < s.size(); ++i) {
            if (s[i] == '9') pos = i;
            if (ss[i] == '9') spos = i;
        }
        if (pos / 3 == spos / 3) {
            if (pos % 3 < spos % 3) {
                putchar('r');
            } else {
                putchar('l');
            }
        } else {
            if (pos / 3 < spos / 3) {
                putchar('d');
            } else {
                putchar('u');
            }
        }
        b = father[1][b];
    }
    putchar('\n');
}

bool Expand(int id) {
    Node h = q[id].front(); q[id].pop();
    int x = h.pos / 3, y = h.pos % 3;

    for (int i = 0; i < 4; ++i) {
        int nx = x + dirx[i];
        int ny = y + diry[i];
        int npos = nx * 3 + ny;

        if (!InRange(nx, ny)) continue;

        string ns = RevHash(h.status);
        swap(ns[h.pos], ns[npos]);
        int hashVal = Hash(ns);

        if (!vis[id][hashVal]) {
            father[id][hashVal] = h.status;
            q[id].push(Node(hashVal, npos));
            vis[id][hashVal] = true;

            if (vis[1 - id][hashVal]) {
                PutPath(hashVal);
                return true;
            }
        }
    }
    return false;
}

bool DBFS(int st, int ed, int pos) {
    memset(vis, 0, sizeof vis);
    memset(father, 0, sizeof father);
    for (int i = 0; i < 2; ++i)
        while (!q[i].empty()) q[i].pop();

    father[0][st] = st;
    father[1][ed] = ed;

    vis[0][st] = true;
    vis[1][ed] = true;

    q[0].push(Node(st, pos));
    q[1].push(Node(ed, 8));

    while (!q[0].empty() && !q[1].empty()) {
        if (q[0].size() <= q[1].size()) {
            if (Expand(0)) return true;
        } else {
            if (Expand(1)) return true;
        }
    }

    for (int i = 0; i < 2; ++i)
        while (!q[i].empty())
            if (Expand(i)) return true;

    return false;
}

int main() {
#ifdef NIGHT_13
    freopen("in.txt", "r", stdin);
#endif
    for (int i = 2; i < 10; ++i) {
        jie[i] = jie[i - 1] * i;
    }
    char s[100];
    while (gets_s(s) != NULL) {
        int len = strlen(s), pos = 0;
        string ma = "";
        for (int i = 0; i < len; ++i) {
            if (s[i] == 'x') {
                pos = ma.size();
                s[i] = '9';
            }
            if (s[i] != ' ') {
                ma += s[i];
            }
        }
        int rev = 0;
        for (int i = 0; i < 9; ++i) {
            if (ma[i] == '9') continue;
            for (int j = i + 1; j < 9; ++j) {
                if (ma[i] > ma[j]) ++rev;
            }
        }
        if (rev & 1) puts("unsolvable");
        else DBFS(Hash(ma), 0, pos);
    }
    return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值