统计学,机器学习,数据挖掘,深度学习的关系

一,统计学

     统计学主要通过利用大量数据进行量化分析,总结出一些经验规律,做出后期推断和预测,从而为相关决策提供依据和参考,其不仅仅是统计数字,还包含了调查、收集、分析、预测等,应用范围十分广泛。

二、数据挖掘

     顾名思义就是从海量数据中“挖掘”隐藏信息,按照教科书的说法,这里的数据是“大量的、不完全的、有噪声的、模糊的、随机的实际应用数据”,信息指的是“隐含的、规律性的、人们事先未知的、但又是潜在有用的并且最终可理解的信息和知识”。在商业环境中,企业希望让存放在数据库中的数据能“说话”,支持决策。所以,数据挖掘更偏向应用。

数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。

三、机器学习

      指用某些算法指导计算机利用已知数据得出适当的模型,并利用此模型对新的情境给出判断的过程。

机器学习的思想并不复杂,它仅仅是对人类生活中学习过程的一个模拟。而在这整个过程中,最关键的是数据。

四,深度学习

   概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值