不知天上宫阙今夕是何年,只觉明日上班,转朱阁,低绮户,照无眠!

心动了木

                      

                                           

                                                                

                                                                                          

请明白以下软件流程图:import turtle as t import random # 全局诗词内容定义 lst1 = [ # 苏轼《水调歌头》正文内容(每元素为一行诗句) "明月几时有把酒问青天", "不知天上宫阙今夕是何年", "我欲乘风归去又恐琼楼玉宇", "高处不胜寒", "起舞弄清影何似在人间", "朱阁无眠", "不应有恨何事长向别时圆", "人有悲欢离合月有阴晴圆缺", "此事古难全", "但愿人长久千里共婵娟" ] lst2 = [ # 落款信息(包含作者和创作信息) "\n苏轼水调歌头", # 换行显示作者 "甲辰年派森海龟书" # 创作时间和方式 ] def init(): """初始化画布参数设置""" t.bgcolor("#108b98") # 青蓝色背景 t.bgpic("书法背景3.png") # 书法背景图 t.setup(1.0, 1.0) # 全屏窗口 t.pencolor("#221616") # 深褐色画笔 t.speed(500) # 最高绘制速度 def PoemText(): """书写竖排诗词正文""" t.penup() x1, y1 = 505, 270 # 起始坐标(右上角) for i in range(10): # 遍历10行诗句 n = len(lst1[i]) for j in range(n): # 逐字竖排书写 # 横向每列间隔60像素,纵向每字间隔35像素 t.goto(x1 - i * 60, y1 - j * 35) t.write(lst1[i][j], font=("米开软笔行楷", 25)) def PoemSignature(): """书写右侧落款""" x2, y2 = 505 - 10 * 60, 100 # 正文右侧对齐坐标 for i in range(2): # 遍历2行落款 n = len(lst2[i]) for j in range(n): # 横向间隔40像素,纵向间隔25像素 t.goto(x2 - i * 40, y2 - j * 25) t.write(lst2[i][j], align="center", font=("米开软笔行楷", 15)) def snow(m): """绘制随机雪花 :param m: 雪花数量 """ t.pencolor("white") t.fillcolor("white") for _ in range(m): # 生成左侧区域随机坐标(X:-700~-400,Y:-200~600) x = -400 - 300 * random.random() y = 600 - 800 * random.random() t.penup() t.goto(x, y) t.pendown() rsnow = 5 * random.random() # 随机半径(0~5像素) t.begin_fill() t.circle(rsnow) t.end_fill() def tree(n, l): """递归绘制梅花树 :param n: 递归层级(控制树枝复杂度) :param l: 当前树枝长度 """ if n <= 0: return t.pensize(2 * n) # 树枝随层级变细 t.pendown() t.forward(l) # 33%概率在树枝中点绘制花朵 if random.randint(0, 2) == 0: t.penup() t.backward(l/2) flower(1 + 4 * random.random()) # 随机花朵大小(1~5) t.forward(l/2)
04-03
内容概要:本文详细探讨了制造业工厂中两条交叉轨道(红色和紫色)上的自动导引车(AGV)调度问题。系统包含2辆红色轨道AGV和1辆紫色轨道AGV,它们需完成100个运输任务。文章首先介绍了AGV系统的背景和目标,即最小化所有任务的完成时间,同时考虑轨道方向性、冲突避免、安全间隔等约束条件。随后,文章展示了Python代码实现,涵盖了轨道网络建模、AGV初始化、任务调度核心逻辑、电池管理和模拟运行等多个方面。为了优化调度效果,文中还提出了冲突避免机制增强、精确轨道建模、充电策略优化以及综合调度算法等改进措施。最后,文章通过可视化与结果分析,进一步验证了调度系统的有效性和可行性。 适合人群:具备一定编程基础和对自动化物流系统感兴趣的工程师、研究人员及学生。 使用场景及目标:①适用于制造业工厂中多AGV调度系统的开发与优化;②帮助理解和实现复杂的AGV调度算法,提高任务完成效率和系统可靠性;③通过代码实例学习如何构建和优化AGV调度模型,掌握冲突避免、路径规划和电池管理等关键技术。 其他说明:此资源不仅提供了详细的代码实现和理论分析,还包括了可视化工具和性能评估方法,使读者能够在实践中更好地理解和应用AGV调度技术。此外,文章还强调了任务特征分析的重要性,并提出了基于任务特征的动态调度策略,以应对高峰时段和卸载站拥堵等情况。
内容概要:本文介绍了一个使用MATLAB编写的基于FDTD(时域有限差分)方法的电磁波在自由空间中传播的仿真系统。该系统采用了ABC(吸收边界条件)和正弦脉冲激励源,并附有详细的代码注释。文中首先介绍了关键参数的选择依据及其重要性,如空间步长(dx)和时间步长(dt),并解释了它们对算法稳定性和精度的影响。接着阐述了电场和磁场的初始化以及Yee网格的布局方式,强调了电场和磁场分量在网格中的交错排列。然后详细讲解了吸收边界的实现方法,指出其简单而有效的特性,并提醒了调整衰减系数时需要注意的问题。最后,描述了正弦脉冲激励源的设计思路,包括脉冲中心时间和宽度的选择,以及如何将高斯包络与正弦振荡相结合以确保频带集中。此外,还展示了时间步进循环的具体步骤,说明了磁场和电场分量的更新顺序及其背后的物理意义。 适合人群:对电磁波传播模拟感兴趣的科研人员、高校学生及工程技术人员,尤其是那些希望深入了解FDTD方法及其具体实现的人群。 使用场景及目标:适用于教学演示、学术研究和技术开发等领域,旨在帮助使用者掌握FDTD方法的基本原理和实际应用,为后续深入研究打下坚实基础。 阅读建议:由于本文涉及较多的专业术语和技术细节,建议读者提前熟悉相关背景知识,如电磁理论、MATLAB编程等。同时,可以通过动手实践代码来加深理解和记忆。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值