#include <stdio.h>
#include <malloc.h>
#define MaxSize 100
typedef int KeyType; //定义关键字类型
typedef char InfoType;
typedef struct node //记录类型
{
KeyType key; //关键字项
InfoType data; //其他数据域
struct node *lchild,*rchild; //左右孩子指针
} BSTNode;
int path[MaxSize]; //全局变量,用于存放路径
void DispBST(BSTNode *b); //函数说明
int InsertBST(BSTNode *&p,KeyType k) //在以*p为根节点的BST中插入一个关键字为k的节点
{
if (p==NULL) //原树为空, 新插入的记录为根节点
{
p=(BSTNode *)malloc(sizeof(BSTNode));
p->key=k;
p->lchild=p->rchild=NULL;
return 1;
}
else if (k==p->key)
return 0;
else if (k<p->key)
return InsertBST(p->lchild,k); //插入到*p的左子树中
else
return InsertBST(p->rchild,k); //插入到*p的右子树中
}
BSTNode *CreatBST(KeyType A[],int n)
//由数组A中的关键字建立一棵二叉排序树
{
BSTNode *bt=NULL; //初始时bt为空树
int i=0;
while (i<n)
InsertBST(bt,A[i++]); //将A[i]插入二叉排序树T中
return bt; //返回建立的二叉排序树的根指针
}
//在二叉排序树中查找,记经过的节点记录在path中,返回值为最后查找节点在path中存储的下标
int SearchBST(BSTNode *bt,KeyType k,KeyType path[],int i)
{
if (bt==NULL)
return i;
else if (k==bt->key) //找到了节点
{
path[i+1]=bt->key; //输出其路径
return i+1;
}
else
{
path[i+1]=bt->key;
if (k<bt->key)
SearchBST(bt->lchild,k,path,i+1); //在左子树中递归查找
else
SearchBST(bt->rchild,k,path,i+1); //在右子树中递归查找
}
}
//查找并显示经过的路径
void SearchResult(BSTNode *bt, int k1)
{
int r, j;
r = SearchBST(bt,k1,path,-1);
for (j=0; j<=r; j++)
printf("%3d",path[j]);
printf("\n");
}
void DispBST(BSTNode *bt)
//以括号表示法输出二叉排序树bt
{
if (bt!=NULL)
{
printf("%d",bt->key);
if (bt->lchild!=NULL || bt->rchild!=NULL)
{
printf("(");
DispBST(bt->lchild);
if (bt->rchild!=NULL) printf(",");
DispBST(bt->rchild);
printf(")");
}
}
}
int main()
{
BSTNode *bt;
KeyType k1=65, k2=32;
int a[]= {43,91,10,18,82,65,33,59,27,73},n=10;
printf("创建的BST树:");
bt=CreatBST(a,n);
DispBST(bt);
printf("\n");
printf(" 查找%d关键字:",k1);
SearchResult(bt,k1);
printf(" 查找%d关键字:",k2);
SearchResult(bt,k2);
return 0;
}
第十四周项目3—二叉树排序树中查找的路径
最新推荐文章于 2023-08-29 17:34:06 发布