论文笔记——A Survey on Text Classification_From Shallow to Deep Learning

论文笔记——A Survey on Text Classification_From Shallow to Deep Learning

1.1 摘要

回顾了1961年至2020年的最新研究方法,重点关注从浅学习到深度学习的模型。我们根据所涉及的文本和用于特征提取和分类的模型,建立了文本分类方法。然后我们详细讨论每一个类别,处理支持预测测试的技术发展和基准数据集。本调查还提供了不同技术之间的综合比较,以及识别各种评价指标的优缺点。最后,总结了该研究的关键意义、未来研究方向和面临的挑战。

每个模块中使用经典方法进行文本分类的流程图

 

浅学习模型通常需要通过人工方法获得较好的样本特征,然后再使用经典的机器学习算法进行分类。因此,该方法的有效性在很大程度上受到特征提取的限制。然而,与浅层模型不同的是,深度学习通过学习一组非线性转换将特征工程集成到模型拟合过程中,这些非线性转换将特征直接映射到输出。大部分的文本分类研究工作都是基于DNNs(Deep Neural Networks)的,DNNs是一种数据驱动、计算复杂度高的方法。

1.2 文本分类方法

(一)浅学习模型步骤:首先是对原始输入文本进行预处理,用于训练浅学习模型,一般包括分词、数据清理和数据统计。然后,文本表示的目标是将预处理后的文本以一种更易于计算机使用并最大限度地减少信息丢失的形式表示,最后,根据选择的特征将表示的文本输入到分类器中。

特性工程是一项艰巨的工作。在训练分类器之前,我们需要收集知识或经验从原始文本中提取特征。浅学习方法根据从原始文本中提取的各种文本特征训练初始分类器。

(二)深度学习模型

1)ReNN:将输入文本的每个单词作为模型结构的叶节点。然后使用权重矩阵将所有节点合并成父节点。权重矩阵在整个模型中共享。每个父节点与所有叶节点具有相同的维度。最后,所有节点递归地聚合成一个父节点来表示输入文本以预测标签。

递归神经网络的结构

 

2)MLP:这是一个三层MLP模型。它包含一个输入层、一个在所有节点中都有激活功能的隐藏层和一个输出层。每个节点连接一个特定的权重wi。段落向量(Page-Vec)是基于它的方法(与CBOW相比,它增加了一个通过矩阵映射到段落向量的段落标记。该模型通过这个向量与单词的三个上下文的联系或平均值来预测第四个单词。段落向量可以被用作段落主题的存储器,并且被用作段落函数并被插入到预测分类器中)。

多层感知器的结构(MLP)

 

3)RNN:首先,使用单词嵌入技术用特定的向量来表示每个输入单词。然后,将嵌入的单词向量一个接一个地输入RNN单元。RNN单元的输出与输入向量的维数相同,并被馈送到下一个隐藏层。RNN在模型的不同部分共享参数,并且每个输入单词的权重相同。最后,输入文本的标签可以通过隐藏层的最后输出来预测。

递归神经网络的结构(RNN)

 

在RNN的反向传播过程中,权重通过梯度来调整,梯度通过导数的连续乘法来计算。如果导数极小,通过连续乘法可能会引起梯度消失问题。长短期记忆(LSTM) (RNN的改进),有效地缓解了梯度消失问题。它由一个在任意时间间隔内记住值的单元和三个控制信息流的门结构组成。门结构包括输入门、忘记门和输出门。LSTM分类方法能够更好地捕捉上下文特征词之间的联系,利用遗忘门结构过滤无用信息,有利于提高分类器的整体捕捉能力。

4)CNN:首先,将输入文本的词向量拼接成一个矩阵。然后将矩阵送入卷积层,卷积层包含几个不同维度的滤波器。最后,卷积层的结果经过池化层,并将池化结果串接起来,得到文本的最终向量表示。分类由最终向量预测。TextCNN可以通过一层卷积更好地确定最大池化层的判别短语,并通过保持词向量静态的方式学习除词向量外的超参数。

据文本的最小嵌入单元,将嵌入方法分为字符级、单词级和句子级嵌入方法。字符级嵌入可以解决词汇表外(OOV)的单词。词级嵌入

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
水下声学数据分类是一项重要的研究领域,而深度学习方法在这个领域中的应用也是备受关注的。深度学习是一种基于人工神经网络的机器学习方法,具有处理大型数据集和自动学习特征表示的优势。 在水下声学数据分类中,有许多不同的深度学习方法被用于处理和分类数据。其中之一是卷积神经网络(CNN)。CNN可以自动识别和提取图像数据中的特征,适用于图像分类和物体检测。在声学数据中,将声波数据转换为图像数据的形式,然后利用CNN进行分类,可以有效地利用CNN的特征提取能力。 另一种常见的深度学习方法是循环神经网络(RNN)。RNN是一种能够处理序列数据的神经网络,适用于时间序列数据的分类和预测。在水下声学数据分类中,声波信号通常是时间序列数据,所以使用RNN可以更好地捕捉到数据中的时序特征。 除了CNN和RNN,还有一些其他的深度学习方法可以应用于水下声学数据分类,如深度信念网络(DBN)、深度玻尔兹曼机(DBM)等。这些方法在处理复杂的声学数据分类问题时表现出的性能优越性。 总结来说,水下声学数据分类方法的深度学习应用非常广泛。CNN、RNN等深度学习方法可以有效地处理数据的特征提取和分类任务,同时还有其他的深度学习方法可以进一步优化水下声学数据的分类效果。随着深度学习技术的不断发展,相信在未来将会有更多更先进的方法应用于水下声学数据的分类研究中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值