各向同性+随动硬化+过应力-vumat-理论推导

1.各向同性+随动硬化

1.1 屈服准则与本构

先不考虑过应力,屈服函数:
f = [ 3 2 ( σ ′ − α ) : ( σ ′ − α ) ] 1 2 − h ( ε ˉ p ) (1.1.1) f=\left[\frac{3}{2}(\sigma'-\alpha):(\sigma'-\alpha) \right]^{\frac{1}{2}}-h(\bar\varepsilon^p)\tag{1.1.1} f=[23(σα):(σα)]21h(εˉp)(1.1.1)
其中,随动硬化的背应力的等效Mises应力满足:
α M i s e s = A ( ε ˉ p ) n (1.1.2a) \alpha_{Mises}=A \left( \bar\varepsilon^p \right)^n\tag{1.1.2a} αMises=A(εˉp)n(1.1.2a)
背应力的增量形式:
Δ α = ∂ α M i s e s ∂ ε ˉ p Δ ε P (1.1.2b) \Delta\alpha=\frac{\partial \alpha_{Mises}}{\partial \bar\varepsilon^p}\Delta \varepsilon^P\tag{1.1.2b} Δα=εˉpαMisesΔεP(1.1.2b)
各向同性硬化:
h ( ε ˉ p ) = B ( ε ˉ p ) m (1.1.3) h(\bar\varepsilon^p)=B\left( \bar\varepsilon^p \right)^m\tag{1.1.3} h(εˉp)=B(εˉp)m(1.1.3)

偏应力形式的Mises等效应力:
σ M i s e s = [ 3 2 ( σ 11 ′ 2 + σ 22 ′ 2 + σ 33 ′ 2 + 2 σ 12 2 + 2 σ 23 2 + 2 σ 13 2 ) ] 1 2 (1.1.4) {σ_{Mises}}= \left [{\frac{3}{2}} \left ({\sigma'_{11}}^2+ {\sigma'_{22}}^2+{\sigma'_{33}}^2+2{\sigma_{12}}^2+2{\sigma_{23}}^2+2{\sigma_{13}}^2\right )\right ]^{\frac{1}{2}}\tag{1.1.4} σMises=[23(σ112+σ222+σ332+2σ122+2σ232+2σ132)]21(1.1.4)

其中: σ 11 ′ = σ 11 − σ v \sigma'_{11}=\sigma_{11}-\sigma_{v} σ11=σ11σv σ 22 ′ = σ 22 − σ v \sigma'_{22}=\sigma_{22}-\sigma_{v} σ22=σ22σv σ 33 ′ = σ 33 − σ v \sigma'_{33}=\sigma_{33}-\sigma_{v} σ33=σ33σv σ v = 1 3 [ σ 11 + σ 22 + σ 33 ] \sigma_{v}=\frac{1}{3} \left [\sigma_{11}+\sigma_{22}+\sigma_{33} \right] σv=31[σ11+σ22+σ33]

Mises等效塑性应变:
ε ˉ p = [ 2 3 ( ε 11 2 + ε 22 2 + ε 33 2 + 2 ε 12 2 + 2 ε 23 2 + 2 ε 13 2 ) ] 1 2 (1.1.5) \bar{ε}^p= \left[ \frac{2}{3}\left ({\varepsilon_{11}}^2+ {\varepsilon_{22}}^2+{\varepsilon_{33}}^2+2{\varepsilon_{12}}^2+2{\varepsilon_{23}}^2+2{\varepsilon_{13}}^2\right )\right]^{\frac{1}{2}}\tag{1.1.5} εˉp=[32(ε112+ε222+ε332+2ε122+2ε232+2ε132)]21(1.1.5)

塑性流动方向垂直于屈服面:
Δ ε p = 3 2 Δ ε ˉ p σ ′ − α ( σ ′ − α ) M i s e s (1.1.6) \Delta \varepsilon^p=\frac{3}{2}\Delta\bar \varepsilon^p\frac{\sigma'-\alpha}{(\sigma'-\alpha)_{Mises}}\tag{1.1.6} Δεp=23Δεˉp(σα)Misesσα(1.1.6)

1.2 牛顿迭代法求解

Δ ε ˉ p \Delta\bar{ε}^p Δεˉp视为自变量,求解屈服函数 f = 0 f=0 f=0 f f f Δ ε ˉ p \Delta\bar{ε}^p Δεˉp的导数 f ′ f' f
f ′ = ∂ f ∂ Δ ε ˉ p = 3 2 ( σ ′ − α ) : ( ∂ σ ′ ∂ Δ ε ˉ p − ∂ α ∂ Δ ε ˉ p ) [ 3 2 ( σ ′ − α ) : ( σ ′ − α ) ] 1 2 − B m ( ε ˉ p ) m − 1 (1.2.1) f'=\frac{\partial f}{\partial\Delta\bar{ε}^p}=\frac{3}{2}\frac{(\sigma'-\alpha):\left(\frac{\partial \sigma'}{\partial\Delta\bar{ε}^p}-\frac{\partial \alpha}{\partial\Delta\bar{ε}^p} \right)}{\left[\frac{3}{2}(\sigma'-\alpha):(\sigma'-\alpha) \right]^{\frac{1}{2}}}-Bm\left( \bar\varepsilon^p \right)^{m-1}\tag{1.2.1} f=Δεˉpf=23[23(σα):(σα)]21(σα):(ΔεˉpσΔεˉpα)Bm(εˉp)m1(1.2.1)
其中:
∂ σ ′ ∂ Δ ε ˉ p = ∂ σ ′ ∂ Δ ε p ⋅ ∂ Δ ε p ∂ Δ ε ˉ p \frac{\partial \sigma'}{\partial\Delta\bar{ε}^p}=\frac{\partial \sigma'}{\partial\Delta{ε}^p} \cdot \frac{\partial\Delta{ε}^p}{\partial\Delta\bar{ε}^p} Δεˉpσ=ΔεpσΔεˉpΔεp

σ ′ = L ′ : ε e ′ = L ′ : ( ε ′ − ε P ) = 2 G ( ε ′ − ε P ) \sigma'=\mathbb L': {\varepsilon^{e}}' =\mathbb L': (\varepsilon'-\varepsilon^P)=2G (\varepsilon'-\varepsilon^P) σ=L:εe=L:(εεP)=2G(εεP)

∂ Δ ε ˉ p ∂ Δ ε p = 2 Δ ε p 3 Δ ε ˉ p \frac{\partial\Delta\bar{ε}^p}{\partial\Delta{ε}^p}=\frac{2\Delta{ε}^p}{3\Delta{\bar ε}^p} ΔεpΔεˉp=3Δεˉp2Δεp

∂ σ ′ ∂ Δ ε ˉ p = 3 G Δ ε ˉ p Δ ε p = 2 G ( σ ′ − α ) M i s e s σ ′ − α (1.2.2) \frac{\partial \sigma'}{\partial\Delta\bar{ε}^p}=\frac{3G\Delta{\bar ε}^p}{\Delta{ε}^p}=2G\frac{(\sigma'-\alpha)_{Mises}}{\sigma'-\alpha}\tag{1.2.2} Δεˉpσ=Δεp3GΔεˉp=2Gσα(σα)Mises(1.2.2)

∂ α ∂ Δ ε ˉ p = ∂ α ∂ α M i s e s ⋅ ∂ α M i s e s ∂ Δ ε ˉ p = α M i s e s α A n ( ε ˉ p ) n − 1 (1.2.3) \frac{\partial \alpha}{\partial\Delta\bar{ε}^p}=\frac{\partial \alpha}{\partial \alpha_{Mises}} \cdot \frac{\partial \alpha_{Mises}}{\partial\Delta\bar{ε}^p}=\frac{\alpha_{Mises}}{\alpha} An \left( \bar\varepsilon^p \right)^{n-1}\tag{1.2.3} Δεˉpα=αMisesαΔεˉpαMises=ααMisesAn(εˉp)n1(1.2.3)

因此: f ′ = 3 G ( σ ′ − α ) M i s e s − ( σ ′ − α ) α α M i s e s A n ( ε ˉ p ) n − 1 [ ( σ ′ − α ) M i s e s ] − B m ( ε ˉ p ) m − 1 (1.2.4) f'=\frac{3G(\sigma'-\alpha)_{Mises}-\frac{(\sigma'-\alpha)}{\alpha}\alpha_{Mises}An \left( \bar\varepsilon^p \right)^{n-1}}{\left[(\sigma'-\alpha)_{Mises}\right]}-Bm\left( \bar\varepsilon^p \right)^{m-1}\tag{1.2.4} f=[(σα)Mises]3G(σα)Misesα(σα)αMisesAn(εˉp)n1Bm(εˉp)m1(1.2.4)

第一步迭代 Δ ε ˉ 1 p = 0 \Delta\bar{ε}^p_1=0 Δεˉ1p=0

代入(1.1.1)和(1.2.4) d Δ ε ˉ p = − f f ′ d\Delta\bar{ε}^p=-\frac{f}{f'} dΔεˉp=ff

Δ ε ˉ n + 1 p = Δ ε ˉ n p + d Δ ε ˉ p \Delta\bar{ε}^p_{n+1}=\Delta\bar{ε}^p_{n}+d\Delta\bar{ε}^p Δεˉn+1p=Δεˉnp+dΔεˉp

更新 σ ′ \sigma' σ α \alpha α,相应的 σ M i s e s ′ \sigma'_{Mises} σMises α M i s e s \alpha_{Mises} αMises ( σ ′ − α ) M i s e s (\sigma'-\alpha)_{Mises} (σα)Mises

判断 d Δ ε ˉ p d\Delta\bar{ε}^p dΔεˉp 的大小,大于误差值,继续循环;小于误差值,输出最后一步的 Δ ε ˉ n p \Delta\bar{ε}^p_n Δεˉnp

2. 各向同性+随动硬化+过应力

1.2 过应力模型

过应力函数:
η   ε ˉ p ˙ = [ 3 2 ( σ ′ − α ) : ( σ ′ − α ) ] 1 2 − h ( ε ˉ p ) (1.2.1) \eta\,\dot{\bar\varepsilon^p}=\left[\frac{3}{2}(\sigma'-\alpha):(\sigma'-\alpha) \right]^{\frac{1}{2}}-h(\bar\varepsilon^p)\tag{1.2.1} ηεˉp˙=[23(σα):(σα)]21h(εˉp)(1.2.1)

应力增量:
Δ σ ′ = L ′ : Δ ε e + η Δ ε ˙ p (1.2.2) \Delta \sigma'= \mathbb{L'}:\Delta\varepsilon^e+\eta\Delta\dot\varepsilon^p\tag{1.2.2} Δσ=L:Δεe+ηΔε˙p(1.2.2)
中心差值:
Δ ε ˉ p = 1 2 ( ε ˉ ˙ t p + ε ˉ ˙ t + Δ t p ) Δ t \Delta \bar\varepsilon^p=\frac{1}{2} \left(\dot{\bar\varepsilon}^p_t + \dot{\bar\varepsilon}^p_{t+\Delta t} \right) \Delta t Δεˉp=21(εˉ˙tp+εˉ˙t+Δtp)Δt

ε ˉ ˙ t + Δ t p = 2 Δ ε ˉ p Δ t − ε ˉ ˙ t p (1.2.3) \dot{\bar\varepsilon}^p_{t+\Delta t}=\frac{2\Delta \bar\varepsilon^p}{\Delta t} -\dot{\bar\varepsilon}^p_t \tag{1.2.3} εˉ˙t+Δtp=Δt2Δεˉpεˉ˙tp(1.2.3)
未知量 Δ ε ˉ p \Delta \bar\varepsilon^p Δεˉp

η ( 2 Δ ε ˉ p Δ t − ε ˉ ˙ t p ) = [ 3 2 ( σ t + Δ t ′ − α t + Δ t ) : ( σ t + Δ t ′ − α t + Δ t ) ] 1 2 − h ( ε ˉ t + Δ t p ) \eta\left( \frac{2\Delta \bar\varepsilon^p}{\Delta t} -\dot{\bar\varepsilon}^p_t \right) =\left[\frac{3}{2}(\sigma'_{t+\Delta t}-\alpha_{t+\Delta t}):(\sigma'_{t+\Delta t}-\alpha_{t+\Delta t}) \right]^{\frac{1}{2}}-h(\bar\varepsilon^p_{t+\Delta t}) η(Δt2Δεˉpεˉ˙tp)=[23(σt+Δtαt+Δt):(σt+Δtαt+Δt)]21h(εˉt+Δtp)

ϕ = η ( 2 Δ ε ˉ p Δ t − ε ˉ ˙ t p ) − [ 3 2 ( σ t + Δ t ′ − α t + Δ t ) : ( σ t + Δ t ′ − α t + Δ t ) ] 1 2 + h ( ε ˉ t + Δ t p ) = 0 (1.2.4) \bm{\phi}=\eta\left( \frac{2\Delta \bar\varepsilon^p}{\Delta t} -\dot{\bar\varepsilon}^p_t \right) -\left[\frac{3}{2}(\sigma'_{t+\Delta t}-\alpha_{t+\Delta t}):(\sigma'_{t+\Delta t}-\alpha_{t+\Delta t}) \right]^{\frac{1}{2}}+h(\bar\varepsilon^p_{t+\Delta t})=0\tag{1.2.4} ϕ=η(Δt2Δεˉpεˉ˙tp)[23(σt+Δtαt+Δt):(σt+Δtαt+Δt)]21+h(εˉt+Δtp)=0(1.2.4)

2.2 牛顿迭代法求解

求解函数 ϕ = 0 \bm{\phi}=0 ϕ=0 ϕ ′ = ∂ ϕ ∂ Δ ε ˉ p \bm{\phi}'=\frac{\partial \bm{\phi}}{\partial \Delta \bar\varepsilon^p} ϕ=Δεˉpϕ

ϕ ′ = 2 η Δ t − [ 3 2 ( ∂ σ t + Δ t ′ ∂ Δ ε ˉ p − α t + Δ t ) ∂ Δ ε ˉ p : ( σ t + Δ t ′ − α t + Δ t ) ] [ 3 2 ( σ t + Δ t ′ − α t + Δ t ) : ( σ t + Δ t ′ − α t + Δ t ) ] 1 2 + ∂ h ( ε ˉ t + Δ t p ) ∂ Δ ε ˉ p (2.2.1) \bm{\phi}'= \frac{2\eta}{\Delta t}-\frac{\left[\frac{3}{2}(\frac{\partial\sigma'_{t+\Delta t}}{\partial \Delta \bar\varepsilon^p}-\frac{\alpha_{t+\Delta t})}{\partial \Delta \bar\varepsilon^p}:(\sigma'_{t+\Delta t}-\alpha_{t+\Delta t}) \right]}{\left[\frac{3}{2}(\sigma'_{t+\Delta t}-\alpha_{t+\Delta t}):(\sigma'_{t+\Delta t}-\alpha_{t+\Delta t}) \right]^{\frac{1}{2}}}+\frac{\partial h(\bar\varepsilon^p_{t+\Delta t})}{\partial \Delta \bar\varepsilon^p}\tag{2.2.1} ϕ=Δt2η[23(σt+Δtαt+Δt):(σt+Δtαt+Δt)]21[23(Δεˉpσt+ΔtΔεˉpαt+Δt):(σt+Δtαt+Δt)]+Δεˉph(εˉt+Δtp)(2.2.1)

应力更新的表达式:
σ t + Δ t ′ = L ′ : ( ε t e + Δ ε − Δ ε ˉ p ) + 2 η ( Δ ε p Δ t − ε ˉ ˙ t p ) (2.2.2) \sigma'_{t+\Delta t}=\mathbb{L'}:(\varepsilon^e_t+\Delta \varepsilon-\Delta \bar\varepsilon^p)+2\eta(\frac{\Delta \varepsilon^p}{\Delta t} -\dot{\bar\varepsilon}^p_t )\tag{2.2.2} σt+Δt=L:(εte+ΔεΔεˉp)+2η(ΔtΔεpεˉ˙tp)(2.2.2)

应力对等效性应变求导:
∂ σ t + Δ t ′ ∂ Δ ε ˉ p = − L ′ : I + 2 η Δ t \frac{\partial\sigma'_{t+\Delta t}}{\partial \Delta \bar\varepsilon^p}=-\mathbb{L'}: I+\frac{2\eta}{\Delta t} Δεˉpσt+Δt=L:I+Δt2η

背应力对等效塑性应变求导,与(1.2.3)相同:
∂ α ∂ Δ ε ˉ p = α M i s e s t + Δ t α t + Δ α A n ( ε ˉ p ) n − 1 (2.2.3) \frac{\partial \alpha}{\partial\Delta\bar{ε}^p}=\frac{\alpha_{Mises_{t+\Delta t}}}{\alpha_t+\Delta \alpha} An \left( \bar\varepsilon^p \right)^{n-1}\tag{2.2.3} Δεˉpα=αt+ΔααMisest+ΔtAn(εˉp)n1(2.2.3)

  • 6
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
开关电源调试常见问题包括变压器饱和现象,电流过应力和开关管过载。变压器饱和现象指的是在高压或低压输入下开机时,通过变压器的电流呈非线性增长。这种现象可能发生在轻载、重载、容性负载、输出短路、动态负载或高温等情况下。当变压器饱和现象发生时,电流的峰值无法预知和控制,可能导致电流过应力和开关管过载。为了解决这个问题,可以采取以下措施: 1. 检查输入电压是否在规定范围内,并根据需要调整输入电压。 2. 检查输出负载,确保它在设计范围内。如果输出负载过高,可以考虑使用更大功率的开关电源或分配负载到多个开关电源上。 3. 检查开关电源的散热情况,确保其能够正常散热。如果温度过高,可以考虑加装散热器或风扇来提高散热效果。 4. 如果存在电流过应力问题,可以考虑采用电流反馈保护电路或限流保护电路来保护开关电源和负载。 5. 对于开关管过载问题,可以优化开关管的选型,选择具有更高功率和更低导通电阻的开关管,以提高开关管的承载能力。 综上所述,通过检查输入电压、输出负载、散热情况,以及优化开关管的选型,可以有效解决开关电源调试中常见的问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [开关电源调试常见问题和解决办法](https://download.csdn.net/download/weixin_38624746/14122513)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [开电源调试时常见的10大问题总结](https://download.csdn.net/download/weixin_38713450/14134266)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [开关电源调试的常见问题集锦](https://download.csdn.net/download/weixin_38522552/14122744)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值