树(Tree)
树的基本概念
树是一种非常重要的非线性数据结构,树的一个节点可能会生出多个分支。一般而言,一棵树会包含一个根节点,向下延伸出若干子节点,每个末端的节点被称为叶子节点。
有根树
有根树存在一个根节点Root,如下:
对于图中概念的一些补充:
- 节点拥有的子节点个数叫做节点的度。
- 具有相同深度的节点处于同一层,方便表示。
无根树
二叉树
二叉树是一种特殊的树。
- 所有节点的度都不超过2的树称为二叉树。
- 因为每个二叉树的节点最多只会有两个子结点,它的两个子节点一般会被称为左、右儿子,两棵子树一般会被称为左、右子树。
- 左、右儿子甚至根节点本身都有可能缺失(一个节点都没有可以称为空二叉树)。
满二叉树和完全二叉树
二叉树也有两个比较特殊的类型:满二叉树和完全二叉树。
-
满二叉树:所有层的节点全满。
- 满二叉树的一些规律
- 第 n n n 层的节点个数为 2 n − 1 2^{n-1} 2n−1
- 深度为 n n n 的满二叉树节点数为 2 0 + 2 1 + 2 2 + ⋯ + 2 n − 1 = 2 n − 1 2^0 + 2^1 + 2^2 + \dots + 2^{n-1}= 2^n-1 20+21+22+⋯+2n−1=2n−1
- 满二叉树的一些规律
-
完全二叉树:除了最后一层以外,其他层的节点个数全满,而且最后一层的节点从左到右排满直到最后一个节点。
- 完全二叉树的一些规律
- 完全二叉树的节点个数不会少于 ( 2 n − 1 − 1 ) + 1 = 2 n − 1 (2^{n-1}-1)+1 = 2^{n-1} (2n−1−1)+1=2n−1
- 完全二叉树的节点个数不会多于 2 n − 1 2^{n} - 1 2n−1
- 一棵完全二叉树,设当前节点为
t
t
t,其父节点为
t
/
2
t/2
t/2,其左儿子为
2
t
2t
2t,其右儿子为
2
t
+
1
2t+1
2t+1,借助该规律,我们可以将完全二叉树使用数组进行存储。
- 完全二叉树的一些规律
-
完全二叉树的存储
- 完全二叉树由于它的特性,可以简单用数组来模拟其结构
- 一般会以数组 [ 1 ] [1] [1]位置为根节点建立二叉树
- 数组 [ t ] [t] [t]位置的左儿子和右儿子对应的位置分别为 [ 2 t ] [2t] [2t]和 [ 2 t + 1 ] [2t+1] [2t+1],父节点的位置为 [ t / 2 ] [t/2] [t/2]。
- 堆、线段树等数据结构的建立也会参考这个方式
完全二叉树的建立(使用数组),使用这种方法建立非完全二叉树,会导致空间的浪费:
void build(int t) {
// 添加数据
UpdateData(t);
// 如果子节点存在
Build(2 * t);
Build(2 * t + 1);
}
为了解决这个问题,我们可以使用其他方法来完成一般二叉树的存储,可以用数组下标模拟节点编号,用多个数组来记录节点信息。为了方便,我们也可以使用结构体来存储这些信息:
// 使用结构体来实现上述操作
struct TreeNode {
int value;
int l, r, fa;
}a[100010];
当然,作为一种树形结构,使用指针显然是更合适的方法:
// 使用指针来实现上述操作
struct TreeNode {
int value;
TreeNode* l;
TreeNode* r;
TreeNode* fa;
};
TreeNode* root;
使用指针的一些操作:
- 新建节点:
struct TreeNode { int value; TreeNode *l, *r, *fa; // 初始为 NULL TreeNode(int x){ value = x; } }; TreeNode* treeNode = new TreeNode(x);
- 根节点初始化:
TreeNode* root; root = new TreeNode(v);
- 插入节点:
void Insert(TreeNode* fa, TreeNode* p, int flag){ // flag = 0 插入到左边 // flag = 1 插入到右边 if (!flag) fa->l = p; else fa->r = p; p->fa = fa; } TreeNode* treeNode = new TreeNode(v); Insert(fa, treeNode, flag);
- 删除节点
// 删除节点
二叉树的遍历
二叉树的遍历可分为先序遍历、中序遍历和后序遍历,这三种方式以访问根节点的时间来区分。
先序遍历(Degree-Left-Right, DLR):根→左→右
中序遍历(Left-Degree-Right, LDR):左→根→右
先序遍历(Left-Right-Degree, LRD):左→右→根
在该图中,先序遍历的结果为 1 2 4 5 3 6 7
,先序遍历代码如下:
void preOrder(TreeNode* treeNode) {
cout << p->value << endl;
if(treeNode->l) preOrder(treeNode->l);
if(treeNode->r) preOrder(treeNode->r);
}
preOrder(root);
在该图中,中序遍历的结果为 4 2 5 1 6 3 7
,中序遍历代码如下:
void inOrder(TreeNode* treeNode) {
if(treeNode->l) inOrder(treeNode->l);
cout << p->value << endl;
if(treeNode->r) inOrder(treeNode->r);
}
inOrder(root);
在该图中,后序遍历的结果为 4 5 2 6 7 3 1
,后序遍历代码如下:
void postOrder(TreeNode* treeNode) {
if(treeNode->l) postOrder(treeNode->l);
if(treeNode->r) postOrder(treeNode->r);
cout << p->value << endl;
}
postOrder(root);
除了上述的几种遍历方式,还有层级遍历(BFS)方式对树进行遍历。层级遍历是借助队列(Queue)来实现的,其过程可以描述如下:
层级遍历的代码如下:
TreeNode* q[N];
void bfs(TreeNode* root) {
int front = 1, rear = 1;
q[1] = root;
while (front <= rear) {
TreeNode* p = q[front]; // 选取队列中最前面的节点
front++;
cout << p->value <<endl;
if(p->l) q[++rear] = p->l;
if(p->r) q[++rear] = p->r;
}
}
bfs(root);