线性回归中自变量出现共线性应该怎么办?

在使用线性回归的时候,自变量和因变量的关系都是非常确定的,不存在遗漏变量等问题,但是这时候估计出来的参数和真值差距非常大,这时候要检查一下自变量之间是否存在共线性。

最简单的办法就是计算一下自变量之间的correlation,如果correlation过大,那么应该是共线性的问题。

那么如何解决共线性的问题呢?下面有几个解决方案。

1. 如果某两个自变量之间的correlation都接近1了,那么最好是删除其中一个。

2. 线性地combine一些自变量

3. partial least square + pca

4. Lasso 和 ridge regression

接下来我们重点讲一下partial least square + pca的思想是怎样的。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值