在使用线性回归的时候,自变量和因变量的关系都是非常确定的,不存在遗漏变量等问题,但是这时候估计出来的参数和真值差距非常大,这时候要检查一下自变量之间是否存在共线性。
最简单的办法就是计算一下自变量之间的correlation,如果correlation过大,那么应该是共线性的问题。
那么如何解决共线性的问题呢?下面有几个解决方案。
1. 如果某两个自变量之间的correlation都接近1了,那么最好是删除其中一个。
2. 线性地combine一些自变量
3. partial least square + pca
4. Lasso 和 ridge regression
接下来我们重点讲一下partial least square + pca的思想是怎样的。