Description
作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。
Input
输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。再接下来M行,每行两个正整数L,R表示一个询问。
Output
包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)
Sample Input
6 4
1 2 3 3 3 2
2 6
1 3
3 5
1 6
Sample Output
2/5
0/1
1/1
4/15
【样例解释】
询问1:共C(5,2)=10种可能,其中抽出两个2有1种可能,抽出两个3有3种可能,概率为(1+3)/10=4/10=2/5。
询问2:共C(3,2)=3种可能,无法抽到颜色相同的袜子,概率为0/3=0/1。
询问3:共C(3,2)=3种可能,均为抽出两个3,概率为3/3=1/1。
注:上述C(a, b)表示组合数,组合数C(a, b)等价于在a个不同的物品中选取b个的选取方案数。
【数据规模和约定】
30%的数据中 N,M ≤ 5000;
60%的数据中 N,M ≤ 25000;
100%的数据中 N,M ≤ 50000,1 ≤ L < R ≤ N,Ci ≤ N。
这是莫队的初等应用。。
主要思想就是离线
然后按照排序从左到右挨个询问
不过询问的时候要分块
#include <iostream>
#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std;
long long tu[200000];
long long hs[200000], pos[200000], jieguo[200000], fm[200000];
long long gcd(long long a, long long b)
{
if (b == 0) return a;
return gcd(b, a%b);
}
struct p
{
long long l, r, i, uu;
bool operator < (const p&a)const {
if (pos[l] == pos[a.l])return pos[r] < pos[a.r];
return pos[l] < pos[a.l];
}
};
p qq[200000];
long long js = 0;
void jia(int er)
{
js -= hs[er] * hs[er] - hs[er];
hs[er]++;
js += hs[er] * hs[er] - hs[er];
}
void jian(long long er)
{
js -= hs[er] * hs[er] - hs[er];
hs[er]--;
js += hs[er] * hs[er] - hs[er];
}
int main()
{
#define int long long
int n, m;
cin >> n >> m;
for (int a = 1;a <= n;a++)scanf("%lld", &tu[a]);
int qw = ceil(sqrt(1.0*n));
for (int a = 1;a <= m;a++)
{
scanf("%lld%lld", &qq[a].l, &qq[a].r);
qq[a].i = a;
fm[a] = qq[a].r - qq[a].l + 1;
pos[a] = (a - 1) / qw+1;//这里用了减一的原因是如果qw为1就会从1开始应该保持尽量一致
}
sort(qq + 1, qq + m + 1);
int z = 1, y = 0;
for (int a = 1;a <= m;a++)
{
if (qq[a].l == qq[a].r)
{
jieguo[qq[a].i] = 0;
continue;
}
while (z < qq[a].l) jian(tu[z]), z++;
while (z>qq[a].l) z--, jia(tu[z]);
while (y > qq[a].r)jian(tu[y]), y--;
while (y < qq[a].r) y++, jia(tu[y]);
jieguo[qq[a].i] = js;
}
for (int a = 1;a <= m;a++)
{
if (!jieguo[a])printf("0/1\n");
else
{
int gcc = gcd(jieguo[a], (fm[a] * (fm[a] - 1)));
int fenzi = jieguo[a] / gcc;
int fenmu = (fm[a] * (fm[a] - 1)) / gcc;
// cout << jieguo[a] << endl;
printf("%lld/%lld\n", fenzi, fenmu);
}
}
return 0;
}