BZOJ 2038 莫队

Description

作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。

Input

输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。再接下来M行,每行两个正整数L,R表示一个询问。

Output

包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)

Sample Input

6 4

1 2 3 3 3 2

2 6

1 3

3 5

1 6

Sample Output

2/5

0/1

1/1

4/15

【样例解释】

询问1:共C(5,2)=10种可能,其中抽出两个2有1种可能,抽出两个3有3种可能,概率为(1+3)/10=4/10=2/5。

询问2:共C(3,2)=3种可能,无法抽到颜色相同的袜子,概率为0/3=0/1。

询问3:共C(3,2)=3种可能,均为抽出两个3,概率为3/3=1/1。

注:上述C(a, b)表示组合数,组合数C(a, b)等价于在a个不同的物品中选取b个的选取方案数。

【数据规模和约定】

30%的数据中 N,M ≤ 5000;

60%的数据中 N,M ≤ 25000;

100%的数据中 N,M ≤ 50000,1 ≤ L < R ≤ N,Ci ≤ N。

这是莫队的初等应用。。
主要思想就是离线
然后按照排序从左到右挨个询问
不过询问的时候要分块

#include <iostream>
#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std;
long long tu[200000];
long long hs[200000], pos[200000], jieguo[200000], fm[200000];
long long gcd(long long a, long long b)
{
    if (b == 0) return a;
    return gcd(b, a%b);
}
struct p
{
    long long l, r, i, uu;
    bool operator < (const p&a)const {
        if (pos[l] == pos[a.l])return pos[r] < pos[a.r];
        return pos[l] < pos[a.l];
    }
};
p qq[200000];
long long js = 0;
void jia(int er)
{
    js -= hs[er] * hs[er] - hs[er];
    hs[er]++;
    js += hs[er] * hs[er] - hs[er];
}
void jian(long long er)
{
    js -= hs[er] * hs[er] - hs[er];
    hs[er]--;
    js += hs[er] * hs[er] - hs[er];
}
int main()
{
#define int long long
    int n, m;
    cin >> n >> m;
    for (int a = 1;a <= n;a++)scanf("%lld", &tu[a]);
    int qw = ceil(sqrt(1.0*n));
    for (int a = 1;a <= m;a++)
    {
        scanf("%lld%lld", &qq[a].l, &qq[a].r);
        qq[a].i = a;
        fm[a] = qq[a].r - qq[a].l + 1;
        pos[a] = (a - 1) / qw+1;//这里用了减一的原因是如果qw1就会从1开始应该保持尽量一致
    }
    sort(qq + 1, qq + m + 1);
    int z = 1, y = 0;
    for (int a = 1;a <= m;a++)
    {
        if (qq[a].l == qq[a].r)
        {
            jieguo[qq[a].i] = 0;
            continue;
        }
        while (z < qq[a].l) jian(tu[z]), z++;
        while (z>qq[a].l) z--, jia(tu[z]);
        while (y > qq[a].r)jian(tu[y]), y--;
        while (y < qq[a].r) y++, jia(tu[y]);
        jieguo[qq[a].i] = js;
    }
    for (int a = 1;a <= m;a++)
    {
        if (!jieguo[a])printf("0/1\n");
        else
        {
            int gcc = gcd(jieguo[a], (fm[a] * (fm[a] - 1)));
            int fenzi = jieguo[a] / gcc;
            int fenmu = (fm[a] * (fm[a] - 1)) / gcc;
        //  cout << jieguo[a] << endl;
            printf("%lld/%lld\n", fenzi, fenmu);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值