CodeForces - 767B

Finally! Vasya have come of age and that means he can finally get a passport! To do it, he needs to visit the passport office, but it’s not that simple. There’s only one receptionist at the passport office and people can queue up long before it actually opens. Vasya wants to visit the passport office tomorrow.

He knows that the receptionist starts working after ts minutes have passed after midnight and closes after tf minutes have passed after midnight (so that (tf - 1) is the last minute when the receptionist is still working). The receptionist spends exactly t minutes on each person in the queue. If the receptionist would stop working within t minutes, he stops serving visitors (other than the one he already serves).

Vasya also knows that exactly n visitors would come tomorrow. For each visitor Vasya knows the point of time when he would come to the passport office. Each visitor queues up and doesn’t leave until he was served. If the receptionist is free when a visitor comes (in particular, if the previous visitor was just served and the queue is empty), the receptionist begins to serve the newcomer immediately.

“Reception 1”
For each visitor, the point of time when he would come to the passport office is positive. Vasya can come to the office at the time zero (that is, at midnight) if he needs so, but he can come to the office only at integer points of time. If Vasya arrives at the passport office at the same time with several other visitors, he yields to them and stand in the queue after the last of them.

Vasya wants to come at such point of time that he will be served by the receptionist, and he would spend the minimum possible time in the queue. Help him!

Input
The first line contains three integers: the point of time when the receptionist begins to work ts, the point of time when the receptionist stops working tf and the time the receptionist spends on each visitor t. The second line contains one integer n — the amount of visitors (0 ≤ n ≤ 100 000). The third line contains positive integers in non-decreasing order — the points of time when the visitors arrive to the passport office.

All times are set in minutes and do not exceed 1012; it is guaranteed that ts < tf. It is also guaranteed that Vasya can arrive at the passport office at such a point of time that he would be served by the receptionist.

Output
Print single non-negative integer — the point of time when Vasya should arrive at the passport office. If Vasya arrives at the passport office at the same time with several other visitors, he yields to them and queues up the last. If there are many answers, you can print any of them.

Example
Input
10 15 2
2
10 13
Output
12
Input
8 17 3
4
3 4 5 8
Output
2
Note
In the first example the first visitor comes exactly at the point of time when the receptionist begins to work, and he is served for two minutes. At 12 minutes after the midnight the receptionist stops serving the first visitor, and if Vasya arrives at this moment, he will be served immediately, because the next visitor would only come at 13 minutes after midnight.

In the second example, Vasya has to come before anyone else to be served.

这个题时间是恒定的
而且最优永远是在某个好的之前

所以只要看见可以插的地方就插进去算是否是最优
当前时间点如果被延迟过就无所谓和前一个间隔多久了
如果没有就区最大的

如果到了结尾都可以
那么最后是最优的

非常精巧的贪心

#include<cstdio>  
#include<cstring>  
#include<algorithm>  
#include<iostream>  
#include<map>
#include<string>  
#include<queue>
using namespace std;
long long  tu[105001];
int main()
{
#define int long long 
    int ts, tf, t;
    cin >> ts >> tf >> t;
    int n;
    cin >> n;
    for (int a = 1; a <= n; a++)scanf("%lld", &tu[a]);
    int xz = ts;
    if (ts < tu[1])
    {
        cout << ts;
        return 0;
    }
    int sd = 1e16;
    int jg;
    for (int a = 1; a <= n; a++)
    {
        if (max(0LL, xz - tu[a] + 1) < sd&&tu[a] - 1 + t <= tf)
        {
            sd = max(0LL, xz - tu[a] + 1);
            jg = tu[a] - 1;
        }
        xz = max(xz, tu[a]) + t;
    }
    if (xz + t <= tf)cout << xz;
    else cout << jg;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值