给你n根火柴棍,你可以拼出多少个形如“A+B=C”的等式?等式中的A、B、C是用火柴棍拼出的整数(若该数非零,则最高位不能是0)。
注意:
加号与等号各自需要两根火柴棍
如果A≠B,则A+B=C与B+A=C视为不同的等式(A,B,C>=0)
n根火柴棍必须全部用上
输入格式:
一个整数n(n<=24)。
输出格式:
一个整数,能拼成的不同等式的数目。
输入样例#1:
14
输出样例#1:
2
输入样例#2:
18
输出样例#2:
9
说明
【输入输出样例1解释】
2个等式为0+1=1和1+0=1。
【输入输出样例2解释】
9个等式为:
0+4=4
0+11=11
1+10=11
2+2=4
2+7=9
4+0=4
7+2=9
10+1=11
11+0=11
此题做法在于将1~1000表示出来:
#include<stdio.h>
int main()
{
int a[2001]={6},b,c[10]={6,2,5,5,4,5,6,3,7,6},s=0,i,j;//数组c表示每个数字对应火柴棒数
cin<<b;
for(i=1;i<=2000;i++)
{
j=i;
while(j>=1)//求每个数所用的火柴棒
{
a[i]=a[i]+c[j%10];
j=j/10;//逐位求火柴棒数
}
}
for(i=0;i<=1000;i++)
{
for(j=0;j<=1000;j++)
if(a[i]+a[j]+a[i+j]+4==b)s++;//还有加号与等号
}
cout<<s;
}