题目描述
给你n根火柴棍,你可以拼出多少个形如“A+B=CA+B=C”的等式?等式中的AA、BB、CC是用火柴棍拼出的整数(若该数非零,则最高位不能是00)。用火柴棍拼数字0-90−9的拼法如图所示:
注意:
-
加号与等号各自需要两根火柴棍
-
如果A≠BA=B,则A+B=CA+B=C与B+A=CB+A=C视为不同的等式(A,B,C>=0A,B,C>=0)
-
nn根火柴棍必须全部用上
输入格式
一个整数n(n<=24)n(n<=24)。
输出格式
一个整数,能拼成的不同等式的数目。
输入输出样例
输入 #1复制
14
输出 #1复制
2
输入 #2复制
18
输出 #2复制
9
说明/提示
【输入输出样例1解释】
22个等式为0+1=10+1=1和1+0=11+0=1。
【输入输出样例2解释】
99个等式为:
0+4=4
0+11=11
1+10=11
2+2=4
2+7=9
4+0=4
7+2=9
10+1=11
11+0=11
分析:
这题并不难,但是有很多细节需要考虑,首先,火柴棒要减掉四根,用做加号和等号,然后用mark数组存下0-9所有数字所需火柴棒个数,之后循环第一个加数和第二个加数,这里要注意,题主看到n<=24,就认为加数也不会超过24,就让两个加数在24里面取值了,wa了两个数据,然后才醒悟到,加数是可以取到百位数的,但与此同时,也要做相应的计算数字火柴棒的改变,注意到这些就可以了
上AC代码:
#include<iostream>
using namespace std;
int n;
int sum;
int ans;
int mark[10]={6,2,5,5,4,5,6,3,7,6};
int calcbihua(int k);
int main()
{
cin>>n;
sum=n-4;
//cout<<"11 is "<<calcbihua(11)<<endl;
for(int i=0;i<=1000;i++)
for(int j=0;j<=1000;j++)
{
int real=i+j;
int sum1=calcbihua(i);
int sum2=calcbihua(j);
int sum3=calcbihua(real);
if(sum==sum1+sum2+sum3)
{
// cout<<i<<" + "<<j<<" = "<<real<<" sum is "<<sum1<<" "<<sum2<<" "<<sum3<<endl;
ans++;
}
}
cout<<ans;
return 0;
}
int calcbihua(int k)
{
if(k<=9)
return mark[k];
else
{
//cout<<"k is "<<k;
int bihua=0;
while(k!=0)
{
int num1=k%10;
int num2=k/10;
//cout<<num1<<" "<<num2<<endl;
bihua+=mark[num1];
if(num2<10)
{
bihua+=mark[num2];
break;
}
k=k/10;
}
//cout<<" bihua is "<<bihua<<endl;
return bihua;
}
}