条件随机场CRF

条件随机场(CRF)是给定一组输入随机变量X的条件下另一组输出随机变量Y的条件概率分布模型,其特点是假设输出随机变量构成马尔科夫随机场。实际上是定义在时序数据上的对数线性模型。条件随机场属于判别模型

概率图模型是由无向图表示的联合概率分布,概率无向图模型的最大特点是易于因子分解。

团:无向图G中任何两个节点均有边连接的节点子集。

最大团:是团并且不能再加进去任何一个G的节点使其成为一个更大的团。

前向-后向算法计算条件随机场的概率问题。条件随机场学习方法(求解参数问题)有:极大似然估计和正则化的极大似然估计。条件随机场的预测算法(给定条件随机场P(Y|X)和输入序列x,求条件概率最大的输出序列y*的过程)是维特比算法,类似于HMM。

条件随机场可以看做是最大熵马尔可夫模型在标注问题上的推广。

转载于:https://www.cnblogs.com/AcceptedLin/p/9779053.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值