P1369 矩形 题解

题目传送门

这道题呢,我们用二维前缀和来解决,

求矩形边界最多的点的个数

思路是:枚举所有矩形,求出各自的边界上点的个数,然后打擂台求出最大值

        1. 如何找出所有矩形

        2. 怎么求出矩形边界上点的个数

        3. 如何求出矩形区域内点的个数

Ans 1:枚举出左上角位置,右下角位置

for(xa)
{
	for(ya) //(xa,ya) 左上角
	{
		for(xb)
		{
			for(yb) //(xb,yb) 右上角
			{
				    	
			}
		}
	}
}

Ans 2:

矩形区域内的点的总数 - 里面的矩形区域的点的点数

 Ans 3:

有点的位置 - 1   没有 - 0

矩形区域总和 = 矩形区域内的点的总数

二维前缀和

(xa,ya)(xb,yb)                (xa+1,ya+1) (xa-1,ya-1)\

整体思路大概就是这样:

上AC代码:

#include <bits/stdc++.h>
using namespace std; 
const int N=1005; 
int a[N][N],s[N][N]; 
int sumSub(int xa,int ya,int xb,int yb)
{
	return s[xb][yb]-s[xb][ya-1]-s[xa-1][yb]+s[xa-1][ya-1]; 
}
int main()
{
	int n,x,y; 
	cin>>n;
	int maxs=1;
	for(int i=1;i<=n;i++)
	{ 
		cin>>x>>y; 
		a[x][y]=1; 
	}
	for(int i=1;i<=100;i++)
	{
		for(int j=1;j<=100;j++)
		{
			s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+a[i][j]; 
		} 
	}
	for(int xa=1;xa<=100;xa++)
	{
		for(int ya=1;ya<=100;ya++)
		{//左上角位置(xa,ya) 
			for(int xb=xa+1;xb<=100;xb++)
			{
				for(int yb=ya+1;yb<=100;yb++)
				{//右下角 (xb,yb) (xa,ya)(xb,yb) (xa+1,ya+1)(xb-1,yb-1) 
					maxs=max(maxs,sumSub(xa,ya,xb,yb)-sumSub(xa+1,ya+1,xb-1,yb- 1)); 
				} 
			} 
		} 
	}
	cout<<maxs;
	return 0;
}

这是AC的昂,如果有运行了报错的话,可能是编译器不一样,或者是别的某方面原因哈 

### 关于P1126机器人搬重物的题解 #### 问题描述 题目要求计算在一个由障碍物组成的矩形区域中,两个机器人分别从起点移动到终点搬运物品所需的最短路径长度之和。地图上的字符表示不同的地形特征,“.”代表可以通过的位置,“*”则意味着存在不可逾越的障碍。 #### 解决方案概述 为了求解这个问题,可以采用广度优先搜索算法(BFS),因为BFS能够有效地找到无权图中的最短路径。对于本题而言,需要两次独立执行BFS来获取各自机器人的最短路线距离矩阵;之后遍历整个网格以找出两者相遇点处的距离总和最小值作为最终答案[^1]。 #### Python代码实现 下面给出完整的Python程序用于解决此竞赛编程挑战: ```python from collections import deque def bfs(start, grid): n, m = len(grid), len(grid[0]) visited = [[False]*m for _ in range(n)] dist = [[-1]*m for _ in range(n)] queue = deque([start]) visited[start[0]][start[1]] = True dist[start[0]][start[1]] = 0 while queue: x, y = queue.popleft() directions = [(0,-1),(0,1),(-1,0),(1,0)] # 左右上下四个方向 for dx, dy in directions: nx, ny = x + dx, y + dy if not (0<=nx<n and 0<=ny<m): continue if visited[nx][ny] or grid[nx][ny]=='*': continue visited[nx][ny]=True dist[nx][ny]=dist[x][y]+1 queue.append((nx,ny)) return dist n,m=map(int,input().split()) grid=[input()for _ in range(n)] sx,sy=-1,-1; ex,ey=-1,-1 for i in range(n): for j in range(m): if grid[i][j]=="E": ex, ey=i,j elif grid[i][j]=="S": sx, sy=i,j d1=bfs((sx,sy),grid) d2=bfs((ex,ey),grid) ans=float('inf') for i in range(n): for j in range(m): if d1[i][j]!=-1 and d2[i][j]!=-1: ans=min(ans,d1[i][j]+d2[i][j]) print(ans if ans!=float('inf') else -1) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值