一、检查电脑上是否有GPU
1.Windows
在Windows上,您可以使用设备管理器来检查是否有GPU:
右键点击开始菜单,选择“设备管理器”。
在设备管理器中,展开“显示适配器”部分。这里列出的设备会显示您的计算机上的所有图形硬件。如果您看到NVIDIA、AMD或Intel等品牌的条目,说明您有一个GPU。
打开NVDIA控制面板,查看GPU驱动版本
2.macOS
在macOS上,直接选择以下命令即可,直接用cpu,不必要用gpu加速
3.Linux
在Linux上,您可以使用命令行工具来检查GPU。打开终端,您可以使用以下命令之一:
对于NVIDIA GPU,使用nvidia-smi命令。
通用检查,使用lspci | grep VGA命令来查找所有的VGA兼容设备,这通常包括GPU。
请注意,如果您在使用这些命令时遇到问题,可能需要安装额外的驱动程序或工具。例如,nvidia-smi需要NVIDIA驱动程序已安装才能正常工作。
二、查找与本地GPU对应的CUDA版本
1.需要注意显卡的算力必须与Cuda runtime version相匹配。
在https://en.wikipedia.org/wiki/CUDA#GPUs_supported查看显卡算力和与之相匹配的Cuda runtime version
2.我前面已经在控制面板中查到了
三、本地下载CUDA Toolkit安装包进行安装
官网https://developer.nvidia.com/cuda-toolkit-archive
选择默认路径
选择自定义安装,然后只勾选第一项
(下面这张图不用管,是之前卸载过的安装的版本)
右键“此电脑”,查看环境变量如下,发现已经自动添加好了cuda的路径
cmd里查看版本信息nvcc -V
查看CPU运行时的监测界面cd C:\Program Files\NVIDIA Corporation\NVSMI
nvidia-smi
进入cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.3\extras\demo_suite
输入bandwidthTest.exe
输入.\deviceQuery.exe
如果以上两个个命令均看到Result = PASS ,说明安装成功
四、安装cudnn8.9
官网https://developer.nvidia.com/rdp/cudnn-archive
将下载下来的压缩包解压后,将对应文件夹的文件放到CUDA安装路径下的对应文件夹里即可。
五、安装PyTorch
官网:https://pytorch.org/
没有符合本机的pytorch版本时点击这个
浏览直至找到匹配的版本
(由于我的cuda 版本是 12.3,就安装的cuda 12.1,亲测是可以成功匹配的)
打开Anaconda Powershell Prompt,输入对应命令
然后会有y/n,选择y即可
六、验证PyTorch是否安装成功
打开jupyter notebook,运行一些测试代码来确认您的环境是否按预期工作,例如:
import torch
print(torch.__version__)
print(torch.cuda.is_available())
- 这将打印出 PyTorch 的版本,并检查 CUDA 是否可用。
- 输入结果如下图,即为成功
七、如何创建、删除环境
不需要删除之前创建的环境。在Anaconda中,您可以同时拥有多个环境,每个环境都有其独立的Python版本和库。这是Anaconda设计的一个强大功能,它允许您为不同的项目创建不同的环境,而不同环境之间不会相互影响。
如果您想创建一个新的环境,使用Python 3.7并在其中安装PyTorch或其他库,您可以直接创建这个新环境,无需删除或更改之前的环境。下面是创建新环境的步骤:
创建新的Python 3.7环境
conda create -n pytorch37 python=3.7
这将创建一个名为pytorch37
的新环境,并在其中安装Python 3.7。
激活新环境
conda activate pytorch37
这个命令激活了新创建的环境。
在新环境中安装PyTorch和其他必要的库
根据您的需求,在新环境中安装PyTorch和其他库。由于您提到了特定的PyTorch和CUDA版本,如果您打算在这个新环境中使用不同的版本,您可以选择合适的版本进行安装。例如,如果您想安装与Python 3.7兼容的PyTorch版本,您可能需要找到适合这个Python版本的PyTorch版本。您可以参考PyTorch的官方安装指南来选择合适的命令。
使用新环境
创建并设置好新环境后,您就可以在这个环境中进行开发了。如果您使用Jupyter Notebook,还需要在新环境中安装ipykernel
,并将该环境添加为Jupyter的一个内核,如前面所述。
管理多个环境
- 查看所有可用环境:
conda env list
- 删除环境(如果需要):
conda remove --name env_name --all
将env_name
替换为您想要删除的环境名称。
通过使用这些策略,您可以灵活地管理和使用多个环境,以满足不同项目的需求,而无需担心环境之间的冲突。
在您提供的图片中,代码已经列出了可用的Jupyter内核,但它只显示了python3
。这意味着在Jupyter中注册的内核中可能没有包含名为pytorch
或其他您可能期望的内核。
八、如何查看图片中所示的内核中有没有pytorch呢?(检查特定内核是否存在)
您可以通过以下步骤检查特定内核是否存在:
-
终端或Anaconda Prompt:
-
打开终端(或在Windows上打开Anaconda Prompt)。
-
激活您想要使用的Conda环境,例如
pytorch_env
。 -
输入以下命令来列出已注册的内核:
conda activate pytorch_env jupyter kernelspec list
-
-
Jupyter Notebook:
-
在Jupyter Notebook中运行以下命令来获取更详细的信息,这将包括内核的名称和它们的安装路径:
from jupyter_client.kernelspec import KernelSpecManager ksm = KernelSpecManager() kernel_specs = ksm.get_all_specs() for kernel_name, kernel_info in kernel_specs.items(): print(f"Kernel name: {kernel_name}") print(f"Path: {kernel_info['resource_dir']}")
-
这将列出所有注册的内核和它们的路径。如果您在列表中看不到名为pytorch
或者类似于您为PyTorch环境创建的内核名称,那么您需要确保您已经为该环境安装了ipykernel,并且已经添加了一个内核。
添加缺失的内核
如果您发现pytorch
内核确实缺失,您需要执行以下步骤来添加它:
-
激活您的环境:
conda activate pytorch
-
安装ipykernel(如果尚未安装):
conda install ipykernel
-
添加内核:
python -m ipykernel install --user --name pytorch --display-name "PyTorch (Python 3.6)"
完成这些步骤后,重新启动Jupyter Notebook,并检查内核列表,以确认您的pytorch_env
内核现在可用。
您已经成功在您的 pytorch
环境中安装了 ipykernel
并且将其作为一个新内核添加到了 Jupyter 中。接下来,您应该做以下几步:
-
启动 Jupyter Notebook:
在 Anaconda Prompt 中,您可以直接启动 Jupyter Notebook。请确保您仍在您的
pytorch
环境中,如果不确定,再次运行conda activate pytorch
。jupyter notebook
-
在 Jupyter Notebook 中切换内核:
- 当您的 Jupyter Notebook 启动并且您打开了一个 notebook 之后,在 notebook 的菜单栏中选择
Kernel
>Change kernel
,然后从列表中选择刚刚添加的 “PyTorch (Python 3.x)” 内核。
- 当您的 Jupyter Notebook 启动并且您打开了一个 notebook 之后,在 notebook 的菜单栏中选择
-
如果有必要,重新启动 Notebook:
- 如果在切换内核后遇到问题,尝试在 notebook 的菜单栏中选择
Kernel
>Restart
。
- 如果在切换内核后遇到问题,尝试在 notebook 的菜单栏中选择
-
开始您的项目:
- 一旦一切设置完毕,并且您已经验证了 PyTorch 和 CUDA 工作正常,您就可以开始在 Jupyter Notebook 中进行您的深度学习项目了。
您现在应该能够在 Jupyter Notebook 中正常使用 PyTorch,并利用您的 GPU(如果 CUDA 可用并且您有支持的 GPU)。
【部分参考:https://blog.csdn.net/weixin_45597212/article/details/135553151】