DataFrame.iloc
是Pandas库中用于通过位置索引(整数位置)来选择DataFrame中的行和列的属性。
具体来说:
-
iloc
是DataFrame
对象的一个属性,用于基于整数位置进行选择。 -
通过
iloc
可以选择特定行和列,类似于传统的二维数组索引。 -
语法为
DataFrame.iloc[row_indices, column_indices]
,其中row_indices
和column_indices
可以是整数、整数列表、整数切片等。
以下是一些示例:
import pandas as pd
# 创建一个示例DataFrame
data = {'A': [1, 2, 3, 4, 5],
'B': [6, 7, 8, 9, 10],
'C': [11, 12, 13, 14, 15]}
df = pd.DataFrame(data)
# 使用 iloc 选择单个元素
print(df.iloc[0, 1]) # 选择第0行第1列的元素,输出: 6
# 使用 iloc 选择一行
print(df.iloc[2]) # 选择第2行,输出: A 3 B 8 C 13
# 使用 iloc 选择多行
print(df.iloc[1:4]) # 选择第1行到第3行,输出:
# A B C
# 1 2 7 12
# 2 3 8 13
# 3 4 9 14
# 使用 iloc 选择一列
print(df.iloc[:, 1]) # 选择第1列,输出: 0 6
# 1 7
# 2 8
# 3 9
# 4 10
# 使用 iloc 选择多列
print(df.iloc[:, 0:2]) # 选择第0列到第1列,输出:
# A B
# 0 1 6
# 1 2 7
# 2 3 8
# 3 4 9
# 4 5 10
需要注意的是,iloc
使用的是整数位置索引,而不是标签索引。如果你想使用标签索引,可以使用 loc
属性。
【另】
Pandas官方文档包含了大量关于pandas.DataFrame的信息和示例。你可以在下面的链接中找到完整的文档:
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iloc.html
在这个文档中,你可以找到关于pandas.DataFrame的方法、属性、参数说明,以及许多示例代码,帮助你了解如何使用DataFrame进行数据处理和分析。