AcWing1027_方格取数

AcWing1027.方格取数

题目链接:AcWing1027.方格取数

1. 题目描述

设有 N × N N \times N N×N 的方格图,我们在其中的某些方格中填入正整数,而其它的方格中则放入数字 0 0 0 。如下图所示:
AcWing1027.方格取数
某人从图中的左上角 A A A 出发,可以向下行走,也可以向右行走,直到到达右下角的 B B B 点。

在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字 0 0 0)。

此人从 A A A 点到 B B B 点共走了两次,试找出两条这样的路径,使得取得的数字和为最大。

输入格式
第一行为一个整数 N N N ,表示 N × N N \times N N×N 的方格图。

接下来的每行有三个整数,第一个为行号数,第二个为列号数,第三个为在该行、该列上所放的数。

行和列编号从 1 1 1 开始。
一行“0 0 0”表示结束。

输出格式
输出一个整数,表示两条路径上取得的最大的和。

数据范围
N ≤ 10 N \leq 10 N10

输入样例:

8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0

输出样例:

67
2. 解题思路

通读整道题,显而易见可以设状态为 f ( i 1 , j 1 , i 2 , j 2 ) f(i_1, j_1, i_2, j_2) f(i1,j1,i2,j2) ,代表从 ( 1 , 1 ) (1, 1) (1,1) 出发走两次分别走到 ( i 1 , j 1 ) (i_1, j_1) (i1,j1) ( i 2 , j 2 ) (i_2, j_2) (i2,j2) 所取得路径和。
但这种状态表示处理“同一个格子不能被重复取值”有些复杂。
那么同一个格子重复的条件是: i 1 + j 1 = = i 2 + j 2 i_1 + j_1 == i_2 + j_2 i1+j1==i2+j2
据此条件,我们可以简化状态定义。可以定义为: f ( k , i 1 , i 2 ) f(k, i_1, i_2) f(k,i1,i2) ,代表所有从 ( 1 , 1 ) (1, 1) (1,1) 走到 ( i 1 , k − i 1 ) (i_1, k - i_1) (i1,ki1) ( i 2 , k − i 2 ) (i_2, k - i_2) (i2,ki2) 的路径的最大值。
k k k 表示两条路线走到的格子的横纵坐标之和。

动态规划分析:
状态表示 f ( k , i 1 , i 2 ) f(k, i_1, i_2) f(k,i1,i2) :所有从 ( 1 , 1 ) (1, 1) (1,1) 走到 ( i 1 , k − i 1 ) (i_1, k - i_1) (i1,ki1) ( i 2 , k − i 2 ) (i_2, k - i_2) (i2,ki2) 的走法。
属性: m a x max max (走法的最大值)。
状态计算:
t = w ( i 1 , j 1 ) + { w ( i 2 , j 2 ) ? } t = w(i_1, j_1) + \{w(i_2, j_2)?\} t=w(i1,j1)+{w(i2,j2)?} (若 i 1 = = i 2 i_1 == i_2 i1==i2 则不加第二部分,否则加第二部分)

  • 1:向下、2:向下 : m a x { f ( k , i 1 , i 2 ) , f ( k − 1 , i 1 − 1 , i 2 − 1 ) + t } max\{f(k, i_1, i_2), f(k - 1, i_1 - 1, i_2 - 1) + t\} max{f(k,i1,i2),f(k1,i11,i21)+t}
  • 1:向下、2:向右 : m a x { f ( k , i 1 , i 2 ) , f ( k − 1 , i 1 − 1 , i 2 ) + t } max\{f(k, i_1, i_2), f(k - 1, i_1 - 1, i_2) + t\} max{f(k,i1,i2),f(k1,i11,i2)+t}
  • 1:向右、2:向下 : m a x { f ( k , i 1 , i 2 ) , f ( k − 1 , i 1 , i 2 − 1 ) + t } max\{f(k, i_1, i_2), f(k - 1, i_1, i_2 - 1) + t\} max{f(k,i1,i2),f(k1,i1,i21)+t}
  • 1:向右、2:向右 : m a x { f ( k , i 1 , i 2 ) , f ( k − 1 , i 1 , i 2 ) + t } max\{f(k, i_1, i_2), f(k - 1, i_1, i_2) + t\} max{f(k,i1,i2),f(k1,i1,i2)+t}
3. 代码实现
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 15;

int n;
int w[N][N];
int f[N * 2][N][N];

int main()
{
    cin >> n;

    int a, b, c;
    while(cin >> a >> b >> c, a || b || c) w[a][b] = c;

    for (int k = 2; k <= 2 * n; k ++ )
        for (int i1 = 1; i1 <= n; i1 ++ )
            for (int i2 = 1; i2 <= n; i2 ++ )
            {
                int j1 = k - i1, j2 = k - i2;
                int t = w[i1][j1];
                if (i1 != i2) t += w[i2][j2];
                f[k][i1][i2] = max(f[k][i1][i2], f[k - 1][i1 - 1][i2 - 1] + t);
                f[k][i1][i2] = max(f[k][i1][i2], f[k - 1][i1][i2 - 1] + t);
                f[k][i1][i2] = max(f[k][i1][i2], f[k - 1][i1 - 1][i2] + t);
                f[k][i1][i2] = max(f[k][i1][i2], f[k - 1][i1][i2] + t);
            }

    printf("%d\n", f[n * 2][n][n]);
    return 0;
}
4. 时间复杂度分析

三重循环,第一重循环 2 n 2n 2n 次,第二重循环 n n n 次,第三重循环 n n n 次,所以整体的时间复杂度是: O ( n 3 ) O(n^3) O(n3)

5. 说明
  1. 上面分析中说的同一格子重复的条件是步数相同,当步数不相同时,由于不能走回头路,所以终点一定不同。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值