本文要完成的目的,实现豆瓣电影TOP250的可视化
思路
讲解思路,采用倒推的方式,
- 首先确定可视化图表,也就是最终的效果。
- 这样就能确定需要那些基础数据
- 根据需要的数据进行按需爬取存储。
本篇文章完成前两步。可视化图表设计 和 模拟数据。
可视化设计
柱状图:
【豆瓣电影TOP250】评价人数最多的电影top10
- 统计对象:电影评分TOP600
- 统计目的:豆瓣电影TOP250
- X轴数据:电影评价人数
- Y轴数据:电影名
【豆瓣电影TOP250】年份最多的电影数量top10
- 统计对象:电影评分TOP600的电影
- 统计目的:年份最多的电影数量top10
- X轴数据:电影数量值
- Y轴数据:电影年份值
折线图
【豆瓣电影TOP250】每年高分电影产量趋势
- 统计对象:豆瓣电影TOP250
- 统计目的:每年高分电影产量趋势
- X轴数据: 电影年份
- Y轴数据: 当年电影数量
饼图
豆瓣电影TOP250各类型电影占比
- 统计对象:豆瓣电影TOP250
- 统计目的:展示不同类型电影在评分TOP600中的比例
- 图表数据:各类型电影的数量
评价人数最多的电影top10
模拟数据
// 假设这是获取到的豆瓣电影TOP250评价人数最多的电影TOP10的数据
var movieData = [
// 电影名, 评价人数
["肖申克的救赎", 1000000],
["霸王别姬", 950000],
["阿甘正传", 900000],
["这个杀手不太冷", Math.floor(Math.random() * 800000) + 100000], // 随机生成100000到900000的评价人数
["千与千寻", Math.floor(Math.random() * 800000) + 100000],
["泰坦尼克号", Math.