输入一个自然数K(K>1),若存在自然数M和N(M>N),使得K^M和K^N均大于或等于1000,且它们的末尾三位数相等,则称M和N是一对“K尾相等数”。现在请编程求出M+N值最小的K尾相等数。
---问题分析
对于一个数,它的幂是无穷无尽的,但是我们可以注意到末尾三位数只有1000个,也就是表明一定会有重复的末尾三位数,当一个数的末尾三位数一定时,它的下一次幂的末尾三位数也一定了
。也就是表明当第一次重复出现大于等于1000的末尾三位数时,这就是我们要求出的M和N了。
2 120
25 7
125 6
1000 3
1234 56
111111 52
1000003 102
123454321 27
---问题分析
对于一个数,它的幂是无穷无尽的,但是我们可以注意到末尾三位数只有1000个,也就是表明一定会有重复的末尾三位数,当一个数的末尾三位数一定时,它的下一次幂的末尾三位数也一定了
。也就是表明当第一次重复出现大于等于1000的末尾三位数时,这就是我们要求出的M和N了。
程序:
#include<iostream>
using namespace std;
int main()
{
int T,i,sum,k,ky,f;
cin>>T;
while(T--)
{
f=0;
int a[1001]={0};
cin>>k;
ky=1;
if(k>999)
{
f=1;
k%=1000;
}
for(i=1;i<1002;i++)
{
ky*=k;
if(f==1||ky>999)
{
f=1;
ky%=1000;
if(a[ky]!=0)
{
sum=a[ky]+i;
break;
}
else
a[ky]=i;
}
}
cout<<sum<<endl;
}
return 0;
}
2 120
25 7
125 6
1000 3
1234 56
111111 52
1000003 102
123454321 27