泰勒展开
定义
设
n
n
n是一个正整数,如果定义在一个包含 a 的区间上的函数 f 在 a 点处 n+1 次可导,那么对于这个区间上的任意 x,都有:
f
(
x
)
=
f
(
a
)
+
f
′
(
a
)
1
!
(
x
−
a
)
+
f
′
′
(
a
)
2
!
(
x
−
a
)
2
+
f
′
′
′
(
a
)
3
!
(
x
−
a
)
3
+
⋯
+
f
n
(
x
)
n
!
(
x
−
a
)
n
+
R
n
(
x
)
f(x)=f(a)+{f'(a) \over 1! }(x-a)+{f''(a) \over 2!}(x-a)^2+{f'''(a) \over 3!}(x-a)^3+\cdots+{f^n(x) \over n!}(x-a)^n + R_n(x)
f(x)=f(a)+1!f′(a)(x−a)+2!f′′(a)(x−a)2+3!f′′′(a)(x−a)3+⋯+n!fn(x)(x−a)n+Rn(x)
其中的多项式称为函数在a 处的泰勒展开式,剩余的 R n ( x ) R_{n}(x) Rn(x)是泰勒公式的余项,是 ( x − a ) n (x-a)^n (x−a)n的高阶无穷小。
证明
f
(
x
)
=
f
(
x
0
)
+
f
′
(
x
0
)
1
!
(
x
−
x
0
)
+
R
n
(
x
)
f(x) = f(x0)+{f'(x0) \over 1!}(x-x0) +R_{n}(x)
f(x)=f(x0)+1!f′(x0)(x−x0)+Rn(x)
求证:
l
i
m
x
→
x
0
f
(
x
)
−
f
(
x
0
)
−
f
′
(
x
0
)
(
x
−
x
0
)
x
−
x
0
=
0
lim_{x \to x0}{f(x)-f(x0)-f'(x0)(x-x0) \over x-x0} = 0
limx→x0x−x0f(x)−f(x0)−f′(x0)(x−x0)=0
根据洛必达法则
l
i
m
x
→
x
0
f
(
x
)
−
f
(
x
0
)
−
f
′
(
x
0
)
(
x
−
x
0
)
x
−
x
0
=
l
i
m
x
→
x
0
(
f
(
x
)
−
f
(
x
0
)
−
f
′
(
x
0
)
(
x
−
x
0
)
)
′
(
x
−
x
0
)
′
=
l
i
m
x
→
x
0
f
′
(
x
)
−
f
(
x
0
)
′
1
=
0
lim_{x \to x0}{f(x)-f(x0)-f'(x0)(x-x0) \over x-x0} = lim_{x \to x0}{(f(x)-f(x0)-f'(x0)(x-x0))' \over (x-x0)'}=lim_{x \to x0} {f'(x) -f(x0)' \over 1} = 0
limx→x0x−x0f(x)−f(x0)−f′(x0)(x−x0)=limx→x0(x−x0)′(f(x)−f(x0)−f′(x0)(x−x0))′=limx→x01f′(x)−f(x0)′=0
归纳演绎,泰勒公式得证
举例
e^x在x=0处展开
e
x
=
e
x
0
+
e
x
0
(
x
−
x
0
)
+
e
x
0
(
x
−
x
0
)
2
2
!
+
e
x
0
(
x
−
x
0
)
3
3
!
+
⋯
e^x = e^{x_0}+e^{x_0}{(x-x_0)}+{e^{x_0}(x-x_0)^2 \over 2!}+{e^{x_0}(x-x_0)^3 \over 3!}+ \cdots
ex=ex0+ex0(x−x0)+2!ex0(x−x0)2+3!ex0(x−x0)3+⋯
在0点处的展开
e
x
=
1
+
x
+
x
2
2
!
+
x
3
3
!
+
x
4
4
!
+
x
5
5
!
+
⋯
e^x = 1+x+{x^2 \over 2!}+{x^3 \over 3!}+{x^4 \over 4!}+{x^5 \over 5!} + \cdots
ex=1+x+2!x2+3!x3+4!x4+5!x5+⋯
sinx 在x=0处展开
sin
x
=
sin
0
+
sin
′
0
(
x
−
0
)
1
!
+
sin
′
′
0
(
x
−
0
)
2
2
!
+
sin
′
′
′
0
(
x
−
0
)
3
3
!
+
sin
′
′
′
′
0
(
x
−
0
)
4
4
!
+
sin
′
′
′
′
′
0
(
x
−
0
)
5
5
!
+
⋯
\sin x = {\sin 0}+{\sin '0(x-0) \over 1!}+{\sin ''0(x-0)^2 \over 2!}+{\sin '''0(x-0)^3 \over 3!}+{\sin ''''0(x-0)^4 \over 4!}+{\sin '''''0(x-0)^5 \over 5!}+ \cdots
sinx=sin0+1!sin′0(x−0)+2!sin′′0(x−0)2+3!sin′′′0(x−0)3+4!sin′′′′0(x−0)4+5!sin′′′′′0(x−0)5+⋯
=
0
+
cos
0
(
x
)
1
!
+
−
sin
0
(
x
−
0
)
2
2
!
+
−
cos
0
(
x
−
0
)
3
3
!
+
sin
0
(
x
−
0
)
4
4
!
+
cos
0
(
x
−
0
)
5
5
!
+
⋯
= {0}+{\cos 0(x) \over 1!}+{-\sin 0(x-0)^2 \over 2!}+{-\cos 0(x-0)^3 \over 3!}+{\sin 0(x-0)^4 \over 4!}+{\cos 0(x-0)^5 \over 5!}+ \cdots
=0+1!cos0(x)+2!−sin0(x−0)2+3!−cos0(x−0)3+4!sin0(x−0)4+5!cos0(x−0)5+⋯
=
0
+
1
(
x
)
1
!
+
−
1
(
x
)
3
3
!
+
1
(
x
)
5
5
!
+
⋯
= {0}+{1(x) \over 1!}+{-1(x)^3 \over 3!}+{1(x)^5 \over 5!}+ \cdots
=0+1!1(x)+3!−1(x)3+5!1(x)5+⋯
cosx 在x=0处展开
cos
x
=
cos
0
+
cos
′
0
(
x
−
0
)
1
!
+
cos
′
′
0
(
x
−
0
)
2
2
!
+
cos
′
′
′
0
(
x
−
0
)
3
3
!
+
cos
′
′
′
′
0
(
x
−
0
)
4
4
!
+
cos
′
′
′
′
′
0
(
x
−
0
)
5
5
!
+
⋯
+
cos
′
′
′
′
′
′
0
(
x
−
0
)
6
6
!
+
⋯
\cos x = {\cos 0}+{\cos '0(x-0) \over 1!}+{\cos ''0(x-0)^2 \over 2!}+{\cos '''0(x-0)^3 \over 3!}+{\cos ''''0(x-0)^4 \over 4!}+{\cos '''''0(x-0)^5 \over 5!}+ \cdots+{\cos ''''''0(x-0)^6 \over 6!}+ \cdots
cosx=cos0+1!cos′0(x−0)+2!cos′′0(x−0)2+3!cos′′′0(x−0)3+4!cos′′′′0(x−0)4+5!cos′′′′′0(x−0)5+⋯+6!cos′′′′′′0(x−0)6+⋯
=
1
+
−
sin
0
(
x
)
1
!
+
−
cos
0
(
x
−
0
)
2
2
!
+
sin
0
(
x
−
0
)
3
3
!
+
cos
0
(
x
−
0
)
4
4
!
+
−
sin
0
(
x
−
0
)
5
5
!
+
⋯
+
−
cos
0
(
x
−
0
)
6
6
!
+
⋯
= {1}+{-\sin 0(x) \over 1!}+{-\cos 0(x-0)^2 \over 2!}+{\sin 0(x-0)^3 \over 3!}+{\cos 0(x-0)^4 \over 4!}+{-\sin 0(x-0)^5 \over 5!}+ \cdots+{-\cos 0(x-0)^6 \over 6!}+ \cdots
=1+1!−sin0(x)+2!−cos0(x−0)2+3!sin0(x−0)3+4!cos0(x−0)4+5!−sin0(x−0)5+⋯+6!−cos0(x−0)6+⋯
=
1
+
−
1
(
x
)
2
2
!
+
(
x
)
4
4
!
+
−
1
(
x
)
6
6
!
+
⋯
= {1}+{-1(x)^2 \over 2!}+{(x)^4 \over 4!}+{-1(x)^6 \over 6!}+ \cdots
=1+2!−1(x)2+4!(x)4+6!−1(x)6+⋯
(1+x)^a在x=0处展开
(
1
+
x
)
α
,
α
∈
ℜ
(1+x)^\alpha, \alpha \in \Re
(1+x)α,α∈ℜ
(
1
+
x
)
α
=
(
1
+
0
)
α
+
(
1
+
0
)
′
α
(
x
−
0
)
1
1
!
+
(
1
+
0
)
′
′
α
(
x
−
0
)
2
2
!
+
(
1
+
0
)
′
′
′
α
(
x
−
0
)
3
3
!
+
(
1
+
0
)
′
′
′
′
α
(
x
−
0
)
4
4
!
(1+x)^\alpha = {(1+0)^\alpha+{(1+0)^{'\alpha}(x-0)^1 \over 1!}}+{(1+0)^{''\alpha}(x-0)^2 \over 2!}+{(1+0)^{'''\alpha}(x-0)^3 \over 3!}+{(1+0)^{''''\alpha}(x-0)^4 \over 4!}
(1+x)α=(1+0)α+1!(1+0)′α(x−0)1+2!(1+0)′′α(x−0)2+3!(1+0)′′′α(x−0)3+4!(1+0)′′′′α(x−0)4
=
(
1
)
+
α
(
x
)
1
1
!
+
α
(
α
−
1
)
(
x
)
2
2
!
+
α
(
α
−
1
)
(
α
−
2
)
(
x
)
3
3
!
+
α
(
α
−
1
)
(
α
−
2
)
(
α
−
3
)
(
x
)
4
4
!
= {(1)+{\alpha(x)^1 \over 1!}}+{{\alpha (\alpha -1)}(x)^2 \over 2!}+{{\alpha (\alpha -1)(\alpha -2)}(x)^3 \over 3!}+{{\alpha (\alpha -1)(\alpha -2)(\alpha -3)}(x)^4 \over 4!}
=(1)+1!α(x)1+2!α(α−1)(x)2+3!α(α−1)(α−2)(x)3+4!α(α−1)(α−2)(α−3)(x)4
ln(1+x)在x=0处展开
f
(
x
)
=
f
(
0
)
+
f
′
(
0
)
1
!
+
f
′
′
(
0
)
2
!
+
f
′
′
′
(
0
)
3
!
+
⋯
f(x) = f(0)+{f'(0) \over 1!}+{f''(0) \over 2!}+{f'''(0) \over 3!}+\cdots
f(x)=f(0)+1!f′(0)+2!f′′(0)+3!f′′′(0)+⋯
其中
ln
′
(
1
+
x
)
=
1
1
+
x
\ln '(1+x) = {1 \over 1+x}
ln′(1+x)=1+x1
ln
′
′
(
1
+
x
)
=
(
1
1
+
x
)
′
=
(
−
1
)
1
(
1
+
x
)
2
\ln ''(1+x) = ({1 \over 1+x})' = (-1){1 \over (1+x)^2}
ln′′(1+x)=(1+x1)′=(−1)(1+x)21
ln
′
′
′
(
1
+
x
)
=
(
(
−
1
)
1
(
1
+
x
)
2
)
′
=
(
−
1
)
(
−
2
)
1
(
1
+
x
)
3
\ln '''(1+x) = ((-1){1 \over (1+x)^2})' = (-1)(-2){1 \over (1+x)^3}
ln′′′(1+x)=((−1)(1+x)21)′=(−1)(−2)(1+x)31
所以
ln
(
1
+
x
)
=
x
−
x
2
2
+
x
3
3
−
x
4
4
+
x
5
5
+
⋯
\ln (1+x) = x - {x^2 \over 2}+{x^3 \over 3}-{x^4 \over 4}+{x^5 \over 5}+\cdots
ln(1+x)=x−2x2+3x3−4x4+5x5+⋯
求极限
例一
lim
x
→
0
e
x
−
1
−
x
−
x
2
sin
x
sin
x
−
x
⋅
cos
x
\lim_{x \to 0}{{e^x-1-x-{x \over 2}\sin x} \over {\sin x -x \cdot \cos x}}
limx→0sinx−x⋅cosxex−1−x−2xsinx
原式等于:
1
+
x
+
x
2
2
!
+
x
3
3
!
+
x
4
4
!
+
x
5
5
!
+
⋯
−
1
−
x
−
x
2
(
1
(
x
)
1
!
+
−
1
(
x
)
3
3
!
+
1
(
x
)
5
5
!
+
⋯
)
1
(
x
)
1
!
+
−
1
(
x
)
3
3
!
+
1
(
x
)
5
5
!
+
⋯
−
x
(
1
+
−
1
(
x
)
2
2
!
+
(
x
)
4
4
!
+
−
1
(
x
)
6
6
!
+
⋯
)
{{1+x+{x^2 \over 2!}+{x^3 \over 3!}+{x^4 \over 4!}+{x^5 \over 5!} + \cdots} -1 -x -{x \over 2}({{1(x) \over 1!}+{-1(x)^3 \over 3!}+{1(x)^5 \over 5!}+ \cdots})} \over{{{1(x) \over 1!}+{-1(x)^3 \over 3!}+{1(x)^5 \over 5!}+ \cdots} -x({{1}+{-1(x)^2 \over 2!}+{(x)^4 \over 4!}+{-1(x)^6 \over 6!}+ \cdots})}
1!1(x)+3!−1(x)3+5!1(x)5+⋯−x(1+2!−1(x)2+4!(x)4+6!−1(x)6+⋯)1+x+2!x2+3!x3+4!x4+5!x5+⋯−1−x−2x(1!1(x)+3!−1(x)3+5!1(x)5+⋯)
=
x
3
3
!
+
x
4
4
!
+
x
5
5
!
+
⋯
−
x
2
(
−
1
(
x
)
3
3
!
+
1
(
x
)
5
5
!
+
⋯
)
−
1
(
x
)
3
3
!
+
1
(
x
)
5
5
!
+
⋯
−
x
(
−
1
(
x
)
2
2
!
+
(
x
)
4
4
!
+
−
1
(
x
)
6
6
!
+
⋯
)
={{{x^3 \over 3!}+{x^4 \over 4!}+{x^5 \over 5!} + \cdots} -{x \over 2}({{-1(x)^3 \over 3!}+{1(x)^5 \over 5!}+ \cdots})} \over{{{-1(x)^3 \over 3!}+{1(x)^5 \over 5!}+ \cdots} -x({{-1(x)^2 \over 2!}+{(x)^4 \over 4!}+{-1(x)^6 \over 6!}+ \cdots})}
3!−1(x)3+5!1(x)5+⋯−x(2!−1(x)2+4!(x)4+6!−1(x)6+⋯)=3!x3+4!x4+5!x5+⋯−2x(3!−1(x)3+5!1(x)5+⋯)
=
x
3
3
!
+
x
4
4
!
+
x
5
5
!
+
⋯
−
x
2
(
−
1
(
x
)
3
3
!
+
1
(
x
)
5
5
!
+
⋯
)
−
1
(
x
)
3
3
!
+
1
(
x
)
5
5
!
+
⋯
−
x
(
−
1
(
x
)
2
2
!
+
(
x
)
4
4
!
+
−
1
(
x
)
6
6
!
+
⋯
)
={{{x^3 \over 3!}+{x^4 \over 4!}+{x^5 \over 5!} + \cdots} -{x \over 2}({{-1(x)^3 \over 3!}+{1(x)^5 \over 5!}+ \cdots})} \over{{{-1(x)^3 \over 3!}+{1(x)^5 \over 5!}+ \cdots} -x({{-1(x)^2 \over 2!}+{(x)^4 \over 4!}+{-1(x)^6 \over 6!}+ \cdots})}
3!−1(x)3+5!1(x)5+⋯−x(2!−1(x)2+4!(x)4+6!−1(x)6+⋯)=3!x3+4!x4+5!x5+⋯−2x(3!−1(x)3+5!1(x)5+⋯)
=
x
3
3
+
R
n
(
x
)
x
3
3
+
R
n
(
x
)
={{x^3 \over 3} +R_n(x)} \over{{x^3 \over 3} +R_n(x)}
3x3+Rn(x)=3x3+Rn(x)
=
1
=1
=1