泰勒展开
定义
设 n n n是一个正整数,如果定义在一个包含 a 的区间上的函数 f 在 a 点处 n+1 次可导,那么对于这个区间上的任意 x,都有:
f ( x ) = f ( a ) + f ′ ( a ) 1 ! ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 + f ′ ′ ′ ( a ) 3 ! ( x − a ) 3 + ⋯ + f n ( x ) n ! ( x − a ) n + R n ( x ) f(x)=f(a)+{f'(a) \over 1! }(x-a)+{f''(a) \over 2!}(x-a)^2+{f'''(a) \over 3!}(x-a)^3+\cdots+{f^n(x) \over n!}(x-a)^n + R_n(x) f(x)=f(a)+1!f′(a)(x−a)+2!f′′(a)(x−a)2+3!f′′′(a)(x−a)3+⋯+n!fn(x)(x−a)n+Rn(x)
其中的多项式称为函数在a 处的泰勒展开式,剩余的 R n ( x ) R_{n}(x) Rn(x)是泰勒公式的余项,是 ( x − a ) n (x-a)^n (x−a)n的高阶无穷小。
证明
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) 1 ! ( x − x 0 ) + R n ( x ) f(x) = f(x0)+{f'(x0) \over 1!}(x-x0) +R_{n}(x) f(x)=f(x0)+1!f′(x0)(x−x0)+Rn(x)
求证:
l i m x → x 0 f ( x ) − f ( x 0 ) − f ′ ( x 0 ) ( x − x 0 ) x − x 0 = 0 lim_{x \to x0}{f(x)-f(x0)-f'(x0)(x-x0) \over x-x0} = 0 limx→x0x−x0f(x)−f(x0)−f′(x0)(x−x0)=0
根据洛必达法则
l i m x → x 0 f ( x ) − f ( x 0 ) − f ′ ( x 0 ) ( x − x 0 ) x − x 0 = l i m x → x 0 ( f ( x ) − f ( x 0 ) − f ′ ( x 0 ) ( x − x 0 ) ) ′ ( x − x 0 ) ′ = l i m x → x 0 f ′ ( x ) − f ( x 0 ) ′ 1 = 0 lim_{x \to x0}{f(x)-f(x0)-f'(x0)(x-x0) \over x-x0} = lim_{x \to x0}{(f(x)-f(x0)-f'(x0)(x-x0))' \over (x-x0)'}=lim_{x \to x0} {f'(x) -f(x0)' \over 1} = 0 limx→x0x−x0f(x)−f(x0)−f′(x0)(x−x0)=limx→x0(x−x0)′(f(x)−f(x0)−f′(x0)(x−x0))′=limx→x01f′(x)−f(x0)′=0
归纳演绎,泰勒公式得证
举例
e^x在x=0处展开
e x = e x 0 + e x 0 ( x − x 0 ) + e x 0 ( x − x 0 ) 2 2 ! + e x 0 ( x − x 0 ) 3 3 ! + ⋯ e^x = e^{x_0}+e^{x_0}{(x-x_0)}+{e^{x_0}(x-x_0)^2 \over 2!}+{e^{x_0}(x-x_0)^3 \over 3!}+ \cdots ex=ex0+ex0(x−x0)+2!ex0(x−x0)2+3!ex0(x−x0)3+⋯
在0点处的展开
e x = 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! + x 5 5 ! + ⋯ e^x = 1+x+{x^2 \over 2!}+{x^3 \over 3!}+{x^4 \over 4!}+{x^5 \over 5!} + \cdots ex=1+x+2!