泰勒展开范例

本文介绍了泰勒展开的概念,证明了泰勒公式,并通过举例展示了e^x、sinx、cosx、(1+x)^a及ln(1+x)在x=0处的泰勒展开,最后探讨了一个涉及泰勒展开的极限问题。
摘要由CSDN通过智能技术生成

泰勒展开

定义

n n n是一个正整数,如果定义在一个包含 a 的区间上的函数 f 在 a 点处 n+1 次可导,那么对于这个区间上的任意 x,都有:
f ( x ) = f ( a ) + f ′ ( a ) 1 ! ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 + f ′ ′ ′ ( a ) 3 ! ( x − a ) 3 + ⋯ + f n ( x ) n ! ( x − a ) n + R n ( x ) f(x)=f(a)+{f'(a) \over 1! }(x-a)+{f''(a) \over 2!}(x-a)^2+{f'''(a) \over 3!}(x-a)^3+\cdots+{f^n(x) \over n!}(x-a)^n + R_n(x) f(x)=f(a)+1!f(a)(xa)+2!f(a)(xa)2+3!f(a)(xa)3++n!fn(x)(xa)n+Rn(x)

其中的多项式称为函数在a 处的泰勒展开式,剩余的 R n ( x ) R_{n}(x) Rn(x)是泰勒公式的余项,是 ( x − a ) n (x-a)^n (xa)n的高阶无穷小。

证明

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) 1 ! ( x − x 0 ) + R n ( x ) f(x) = f(x0)+{f'(x0) \over 1!}(x-x0) +R_{n}(x) f(x)=f(x0)+1!f(x0)(xx0)+Rn(x)
求证:
l i m x → x 0 f ( x ) − f ( x 0 ) − f ′ ( x 0 ) ( x − x 0 ) x − x 0 = 0 lim_{x \to x0}{f(x)-f(x0)-f'(x0)(x-x0) \over x-x0} = 0 limxx0xx0f(x)f(x0)f(x0)(xx0)=0
根据洛必达法则
l i m x → x 0 f ( x ) − f ( x 0 ) − f ′ ( x 0 ) ( x − x 0 ) x − x 0 = l i m x → x 0 ( f ( x ) − f ( x 0 ) − f ′ ( x 0 ) ( x − x 0 ) ) ′ ( x − x 0 ) ′ = l i m x → x 0 f ′ ( x ) − f ( x 0 ) ′ 1 = 0 lim_{x \to x0}{f(x)-f(x0)-f'(x0)(x-x0) \over x-x0} = lim_{x \to x0}{(f(x)-f(x0)-f'(x0)(x-x0))' \over (x-x0)'}=lim_{x \to x0} {f'(x) -f(x0)' \over 1} = 0 limxx0xx0f(x)f(x0)f(x0)(xx0)=limxx0(xx0)(f(x)f(x0)f(x0)(xx0))=limxx01f(x)f(x0)=0
归纳演绎,泰勒公式得证

举例

e^x在x=0处展开

e x = e x 0 + e x 0 ( x − x 0 ) + e x 0 ( x − x 0 ) 2 2 ! + e x 0 ( x − x 0 ) 3 3 ! + ⋯ e^x = e^{x_0}+e^{x_0}{(x-x_0)}+{e^{x_0}(x-x_0)^2 \over 2!}+{e^{x_0}(x-x_0)^3 \over 3!}+ \cdots ex=ex0+ex0(xx0)+2!ex0(xx0)2+3!ex0(xx0)3+
在0点处的展开
e x = 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! + x 5 5 ! + ⋯ e^x = 1+x+{x^2 \over 2!}+{x^3 \over 3!}+{x^4 \over 4!}+{x^5 \over 5!} + \cdots ex=1+x+2!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值