初等函数导数与泰勒展开

本文介绍了微积分中的基本概念,包括导数的定义、求导法则和泰勒展开。讨论了两个重要极限,详细阐述了导数的计算,如初等函数、反函数和复合函数的导数。此外,还探讨了泰勒展开式,包括罗尔、拉格朗日和柯西中值定理,以及洛必达法则。泰勒公式在近似计算中的应用也被提及。
摘要由CSDN通过智能技术生成

两个重要极限

  • l i m n → ∞ ( 1 + 1 n ) = e lim_{n \to \infin}(1+{1\over n}) = e limn(1+n1)=e
  • l i m x → 0 sin ⁡ x x = 1 lim_{x \to 0}{\sin x \over x} = 1 limx0xsinx=1

导数的定义与求导法则1

定义
设有定义域和取值都在实数域中的函数 y = f ( x ) y = f(x) y=f(x)。若在点 x 0 x_0 x0的某个邻域内有定义,则当自变量 x x x x 0 x_0 x0处取得增量 Δ x \Delta x Δx时,相应的 y y y取得增量 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y = f(x_0 + \Delta x) -f(x_0) Δy=f(x0+Δx)f(x0);如果 Δ y \Delta y Δy Δ x \Delta x Δx之比在 Δ x → 0 \Delta x \to 0 Δx0时的极限存在,则称 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处可导,并称这个极限为函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处的导数,记为 f ′ ( x 0 ) f'(x_0) f(x0)即:
f ′ ( x 0 ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_0) = \lim_{ \Delta x \to 0}{\Delta y \over \Delta x} = {\lim_{\Delta x \to 0}{ {f(x_0+\Delta x)-f(x_0)} \over \Delta x}} f(x0)=limΔx0ΔxΔy=limΔx0Δxf(x0+Δx)f(x0)

求导法则

  1. 对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合
    ( a f + b g ) ′ = a f ′ + b g ′ (af+bg)' = af'+bg' (af+bg)=af+bg
  2. 两个函数的乘积的导函数,等于其中一个的导函数乘以另一者,加上另一者的导函数与其的乘积
    ( f g ) ′ = f ′ g + f g ′ (fg)' = f'g+fg' (fg)=fg+fg
  3. 两个函数的商的导函数也是一个分式。其中分子是分子函数的导函数乘以分母函数减去分母函数的导函数乘以分子函数后的差,而其分母是分母函数的平方
    ( f g ) ′ = f ′ g − f g ′ g 2 ({f \over g})' = {f'g-fg' \over g^2} (gf)=g2fgfg
  4. 复合函数的求导法则
    g ′ ( f ( x ) ) = g ′ ( f ) ⋅ f ′ ( x ) g'(f(x)) = g'(f) \cdot f'(x) g(f(x))=g(f)f(x)

初等函数的导数

sin ⁡ ′ x = cos ⁡ x \sin 'x = \cos x sinx=cosx

证明
sin ⁡ ′ x 0 = l i m Δ x → 0 sin ⁡ ( Δ x + x 0 ) − sin ⁡ x 0 Δ x \sin 'x0 = lim_{\Delta x \to 0} {\sin (\Delta x +x0) - \sin x0 \over \Delta x} sinx0=limΔx0Δxsin(Δx+x0)sinx0
= l i m Δ x → 0 2 sin ⁡ Δ x 2 cos ⁡ ( x 0 + Δ x 2 ) Δ x =lim_{\Delta x \to 0}{2\sin {\Delta x \over 2} \cos (x0 + {\Delta x \over 2}) \over \Delta x} =limΔx0Δx2sin2Δxcos(x0+2Δx)
= l i m Δ x → 0 sin ⁡ Δ x 2 Δ x 2 ⋅ l i m Δ x → 0 cos ⁡ ( x 0 + Δ x 2 ) =lim_{\Delta x \to 0}{\sin {\Delta x \over 2} \over {\Delta x \over 2}} \cdot lim_{\Delta x \to 0}{\cos (x0+{\Delta x \over 2})} =limΔx02Δxsin2ΔxlimΔx0cos(x0+2Δx)
= cos ⁡ x 0 = \cos x0 =cosx0


( x n ) ′ = n x n − 1 , ( n ≠ 0 ) (x^n)' = nx^{n-1},(n \neq 0) (xn)=nxn1,(n̸=0)

证明
( x n ) x 0 ′ = l i m Δ x → 0 ( x 0 + Δ x ) n − x 0 n Δ x (x^n)_{x_0}' = lim_{\Delta x \to 0}{ {(x_0+\Delta x)^n -x_0^n}\over \Delta x} (x

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值