from keras.datasets import boston_housing
import numpy as np
from keras import models
from keras import layers
import matplotlib.pyplot as plt
(train_data, train_targets), (test_data, test_targets) = boston_housing.load_data(path='./boston_housing.npz')
# 数据标准化
mean = train_data.mean(axis=0)
train_data -= mean
std = train_data.std(axis=0)
train_data /= std
test_data -= mean
test_data /= std
def build_model():
model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(train_data.shape[1],)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(1))
model.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])
return model
# K折验证
k = 4
num_val_samples = len(train_data) // k
num_epochs = 100
all_scores = []
for i in range(k):
print('processiong fold #', i)
val_data = train_data[i * num_val_samples: (i+1)*num_val_samples]
val_target = train_targets[ i * num_val_samples: (i+1)*num_val_samples]
partial_train_data = np.concatenate(
[train_data[:i*num_val_samples],
train_data[(i+1)*num_val_samples:]],
axis=0)
partial_train_targets = np.concatenate(
[train_targets[:i * num_val_samples],
train_targets[(i + 1) * num_val_samples:]],
axis=0)
model = build_model()
model.fit(partial_train_data, partial_train_targets,
epochs=num_epochs, batch_size=1, verbose=0)
val_mse, val_mae = model.evaluate(val_data, val_target, verbose=0)
all_scores.append(val_mae)
print(all_scores)