自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

风信子的猫Redamancy的快乐星球

未来是什么样,不用去猜

  • 博客(312)
  • 资源 (50)
  • 问答 (2)
  • 收藏
  • 关注

原创 第十四届蓝桥杯第三期模拟赛 【python】

这样在下一次搜索的时候,如果发现当前的dp数组的值已经被记录过了,那我们就直接返回值即可,就不需要那么多花里胡哨的操作,其实这道题可能也叫树形的DFS,有时候还是会出现的,不过思路还是OK的,就是类似于树形一样不断迭代dfs而已,最后就是还要加上这个递归深度的代码,这样保证自己不会出错!首先简单讲一讲DFS的思路吧,我们会从当前x,y进行不断搜索,然后发现下一个点符合条件,在范围内且严格小于当前点的高度,我们就继续搜索,因为我们要取最长,所以我们要取max,不断取最优的结果,最后都记录到我们的dp数组中。

2023-03-06 21:01:43 9322 20

原创 Paddle 点灯人 之 Paddle介绍

Paddle 是一个开源的深度学习框架,由百度推出。它包含了各种深度学习模型和工具,可以帮助开发者更快速、高效地构建和训练深度学习模型。Paddle 支持多种深度学习模型,包括卷积神经网络 (CNN)、循环神经网络 (RNN)、生成对抗网络 (GAN)、自动编码器 (AE) 等。它还提供了多种预训练模型,可以直接使用,满足各种不同应用场景的需求。Paddle 具有高度优化的计算图和高性能的 C++ 后端,可以有效加速模型的训练和推理。

2022-12-08 16:20:35 1515

原创 Pytorch&Keras CIFAR10图像分类(详情介绍以及汇总所有博客)

一开始写这个专栏的初衷是,有时候有些代码找的太繁琐了,并且找到了还运行不出来,或者运行了,但是没有一个很好的理解,所以基于此,我写了这个CIFAR10图像分类的专栏,借此希望,大家都能通过我这个专栏,找到自己想要的模型或者学习深度学习的代码。由于现在深度学习也在热度中,很多时候我们难免需要遇见深度学习的时候,在一些课程和项目的要求下,我们会发现,一个好的代码和一个好的可视化和清晰解释是能够节省特别特别多的时间的,基于此,我写出了这个专栏,这个专栏下的所有项目,都是**可运行无差错的。

2022-11-15 09:13:38 835 4

原创 GAN Step By Step (一步一步学习GAN)

GSBS,顾名思义,我希望我自己能够一步一步的学习GAN。GAN 又名 生成对抗网络,是最近几年很热门的一种无监督算法,他能生成出非常逼真的照片,图像甚至视频。GAN是一个图像的全新的领域,从2014的GAN的发展现在,在计算机视觉中扮演这越来越重要的角色,并且到每年都能产出各色各样的东西,GAN的理论和发展都蛮多的。我感觉最近有很多人都在学习GAN,但是国内可能缺少比较多的GAN的理论及其实现,所以我也想着和大家一起学习,并且提供主流框架下 pytorch,tensorflow,keras 的一些实现教学

2022-09-28 09:20:21 579 1

原创 MAE实现及预训练可视化 (CIFAR-Pytorch)

MAE实现及预训练可视化 (CIFAR-Pytorch)自去年 11 月份恺明大神提出 MAE 来,大家都被 MAE 简单的实现、极高的效率和惊艳的性能所吸引。近几个月,大家也纷纷 follow 恺明的工作,在 MAE 进行改进(如将 MAE 用到层次 Transformer 结构)或将 MAE 应用于图片之外的数据(如视频、多模态)。这是何凯明大佬的又一力作,CV 圈子基本都晓得,当时火爆了整个圈子,所以今天尝试在cifar数据集上进行搭建。

2022-09-15 08:53:11 2224 10

原创 Pytorch CIFAR10图像分类 Vision Transformer(ViT) 篇

Vision Transformer(ViT)简介近些年,随着基于自注意(Self-Attention)结构的模型的发展,特别是Transformer模型的提出,极大地促进了自然语言处理模型的发展。由于Transformers的计算效率和可扩展性,它已经能够训练具有超过100B参数的空前规模的模型。ViT则是自然语言处理和计算机视觉两个领域的融合结晶。在不依赖卷积操作的情况下,依然可以在图像分类任务上达到很好的效果。

2022-09-08 12:00:00 2330 7

原创 《30天吃掉那只 TensorFlow2.0》 开篇辞(Tensorflow 学习之路)

如果是工程师,应该优先选TensorFlow2.如果是学生或者研究人员,应该优先选择Pytorch.如果时间足够,最好TensorFlow2和Pytorch都要学习掌握。

2022-08-17 12:26:09 1573

原创 【论文泛读】 Deep Learning 论文合集

【论文泛读】 Deep Learning 论文合集文章目录【论文泛读】 Deep Learning 论文合集Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate ShiftImageNet Classification with Deep Convolutional Neural NetworksVery Deep Convolutional Networks for Large-Sca

2021-10-12 00:00:00 4895

原创 Pytorch Note 快乐星球

Pytorch Note这是我的Pytoch学习笔记,下面会慢慢的更新我的学习笔记Note1 Pytorch介绍Note2 Pytorch环境配置

2021-06-11 13:24:18 10732 16

原创 机器学习之路 The Road To Machine Learning

The Road to Machine LearningThe Road to Machine Learning吴恩达机器学习课程练习 Exercise机器学习实战项目 Project学习心得 Note吴恩达机器学习课程练习 Exerciseex1 Linear Regressionex2 Logistic Regressionex3 Multi-class Classfication and Neural Networks机器学习实战项目 Project泰坦尼克号生存预测 Titan

2021-03-11 14:18:22 17600 8

原创 【论文精读】 SadTalker:Stylized Audio-Driven Single Image Talking Face Animation(CVPR2023)

不自然的头部运动扭曲的表情和身份变化。作者认为这些问题主要是因为从耦合的 2D 运动场中学习。另一方面,使用 3D 信息也存在表情僵硬和视频不连贯的问题。因此作者提出SadTalker,生成3DMM的三维(头部姿势、表情)系数,利用三维面部渲染器进行视频生成。为了学习逼真的运动场系数,作者建模音频与不同类别运动场系数之间联系。作者提出ExpNet,蒸馏运动场系数与三维渲染人脸学习准确面部表情。对于头部姿势,作者设计PoseVAE生成不同风格头部动画。

2023-03-24 18:22:25 109

原创 【虚拟人综述论文】Human-Computer Interaction System: A Survey of Talking-Head Generation

由于人工智能的快速发展,虚拟人被广泛应用于各种行业,包括个人辅助、智能客户服务和在线教育。拟人化的数字人可以快速与人接触,并在人机交互中增强用户体验。因此,我们设计了人机交互系统框架,包括语音识别、文本到语音、对话系统和虚拟人生成。接下来,我们通过虚拟人深度生成框架对Talking-Head Generation视频生成模型进行了分类。同时,我们系统地回顾了过去五年来在有声头部视频生成方面的技术进步和趋势,强调了关键工作并总结了数据集。

2023-03-04 13:31:18 734

原创 【论文泛读】NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

我们提出一种方法,使用较少的视图(view)作为输入,对一个连续、隐含的体积场景函数(volumetric scene function)进行优化,从而实现了关于复杂场景的新视图合成的最先进的结果。我们的算法用全连接深度网络来表示场景,其输入是5D 坐标空间位置xyz(x,y,z)xyz和视角方向(viewing direction)$ (θ,ϕ)$;其输出是体积密度(volume density)和该空间位置上发射出来的辐射亮度(radiance,与视角相关)。通过沿着。

2023-03-04 00:46:49 352

原创 GAN Step By Step -- Step7 WGAN

WGAN,即Wasserstein GAN,算是GAN史上一个比较重要的理论突破结果,它将GAN中两个概率分布的度量从f散度改为了Wasserstein距离,从而使得WGAN的训练过程更加稳定,而且生成质量通常也更好。Wasserstein距离跟最优传输相关,属于Integral Probability Metric(IPM)的一种,这类概率度量通常有着更优良的理论性质,因此WGAN的出现也吸引了很多人从最优传输和IPMs的角度来理解和研究GAN模型。

2023-01-10 22:43:02 857 3

原创 【论文泛读】ConvNeXt:A ConvNet for the 2020s(新时代的卷积)

在新时代中,是否卷积神经网络就已经被时代淘汰了呢!FaceBook研究所的“A ConvNet for the 2020s”,即ConvNeXt 这篇文章,通过借鉴 Swin Transformer 精心构建的 tricks,卷积在图像领域反超 Transform。这些技巧对分类问题下游downstream的问题也有效果。简单的来说,似乎就是说明,用Swin Transformer的丹方,在卷积神经网络中炼丹也有很好的效果。

2023-01-07 13:21:55 804

原创 Pytorch CIFAR10图像分类 EfficientNet v1篇

EfficientNet源自Google Brain的论文EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. 从标题也可以看出,这篇论文最主要的创新点是. 论文提出了,混合缩放,把网络缩放的三种方式:深度、宽度、分辨率,组合起来按照一定规则缩放,从而提高网络的效果。EfficientNet在网络变大时效果提升明显,把精度上限进一步提升,成为了当前最强网络。

2023-01-07 11:25:23 775

原创 Pytorch CIFAR10图像分类 ZFNet篇

首先简单介绍一下ZFNet吧,ZFNet来源于2013的Matthew D. Zeiler和Rob Fergus的Visualizing and Understanding Convolutional Networks论文,为什么叫ZFNet也很简单,作者的两个名的首字母加起来就是啦,这里也给出论文地址,有兴趣可以看看论文在 2013 年 ImageNet 大规模视觉识别挑战赛 (ILSVRC) 中,ZFNet 比 AlexNet 有了显着改进,成为众人瞩目的焦点。

2023-01-05 11:44:35 696 1

原创 【学习打卡07】 可解释机器学习笔记之Shape+Lime代码实战

在这次任务中,主要学习到了Shap和Lime工具包的使用,在图像分类的基础上去解释他,知其然还要知其所以然。使用CAM和Captum工具包,可以减少我们很多很多的代码量,并且能快速使用,快速应用在自己的任务中、在经过一个多星期的学习,也是需要这种代码实战告诉我们,这些应用是全面且方方面面的,这样就不会空读理论,这样可以让我们有机会将理论和实践结合起来,希望后续能够将XAI和Lime运用到我的领域中,学习到更多的知识。

2022-12-25 23:05:01 700

原创 【学习打卡05】可解释机器学习笔记之CAM+Captum代码实战

在前面经过4个知识的学习之后,已经对可解释机器学习有了一定的了解,但是这些有什么用呢,最重要的当然是代码实战,所以这一部分学习的就是CAM和Captum的一些可视化的代码实战,能将理论和代码结合起来,方便我们理解和学习。,可以用pytorch训练自己的图像分类模型,基于torch-cam实现各个类别、单张图像、视频文件、摄像头实时画面的CAM可视化在这次任务中,主要学习到了CAM和Captum工具包的使用,在图像分类的基础上去解释他,知其然还要知其所以然。

2022-12-22 00:16:37 778

原创 Pytorch CIFAR10图像分类 ZFNet篇

首先简单介绍一下ZFNet吧,ZFNet来源于2013的Matthew D. Zeiler和Rob Fergus的Visualizing and Understanding Convolutional Networks论文,为什么叫ZFNet也很简单,作者的两个名的首字母加起来就是啦,这里也给出论文地址,有兴趣可以看看论文在 2013 年 ImageNet 大规模视觉识别挑战赛 (ILSVRC) 中,ZFNet 比 AlexNet 有了显着改进,成为众人瞩目的焦点。

2022-12-19 12:24:44 509

原创 【学习打卡04】可解释机器学习笔记之Grad-CAM

其实 CAM 得到的效果已经很不错了,但是由于其需要修改网络结构并对模型进行重新训练,这样就导致其应用起来很不方便。CAM的缺点必须得有GAP层,否则得修改模型结构后重新训练只能分析最后一层卷积层输出,无法分析中间层仅限图像分类任务Grad-CAM解决了上述问题,基本思路和CAM是一致的,也是通过得到每对特征图对应的权重,最后求一个加权和。区别是求解权重的过程,CAM通过替换全连接层为GAP层,重新训练得到权重,而Grad-CAM另辟蹊径,用梯度的全局平均来计算权重。

2022-12-18 23:02:45 770

原创 【学习打卡03】可解释机器学习笔记之CAM类激活热力图

一直以来,深度神经网络的可解释性都被大家诟病,训练一个神经网络被调侃为“炼丹”。所得的模型也像一个“黑盒”一样,给它一个输入,然后得到结果,却不知道模型是如何得出结论的,究竟学习到了什么知识。如果能将其训练或者推理过程可视化,那么可以对其更加深入的理解,目前深度神经网络可视化可以分为:可视化卷积核;可视化特征图;可视化激活热力图,也就是不同位置像素点对得出结果的影响程度图 神经网络可视化汇总。

2022-12-17 22:40:44 838 1

原创 【学习打卡02】可解释机器学习笔记之ZFNet

首先简单介绍一下ZFNet吧,ZFNet来源于2013的Matthew D. Zeiler和Rob Fergus的Visualizing and Understanding Convolutional Networks论文,为什么叫ZFNet也很简单,作者的两个名的首字母加起来就是啦,这里也给出论文地址,有兴趣可以看看论文在 2013 年 ImageNet 大规模视觉识别挑战赛 (ILSVRC) 中,ZFNet 比 AlexNet 有了显着改进,成为众人瞩目的焦点。

2022-12-15 22:50:09 592

原创 【学习打卡01】可解释机器学习之导论

首先非常感谢同济子豪兄拍摄的可解释机器学习公开课,并且免费分享,这门课程,包含人工智能可解释性、显著性分析领域的导论、算法综述、经典论文精读、代码实战、前沿讲座。由B站知名人工智能科普UP主“同济子豪兄”主讲。 课程主页:https://github.com/TommyZihao/zihao_course/blob/main/XAI 一起打开AI的黑盒子,洞悉AI的脑回路和注意力,解释它、了解它、改进它,进而信赖它。知其然,也知其所以然。这里给出链接,倡导大家一起学习,别忘了给子豪兄点个关注哦。

2022-12-13 12:21:25 727

原创 Paddle 点灯人 之 Tensor

Paddle点灯人这个专栏,我希望更多是给予部分已有深度学习基础亦或者是想快速部署应用的进行学习,这样利用paddle做出更简单更好的方法,因为如果从0开始写Paddle的使用和介绍,我相信paddle的文档已经很详细了,如果想从0开始学,可以查看所以我希望我基于此,更多的是为了,让大家在学习torch的同时,对paddle也有一定了解,可以使用paddle更便捷的部署在自己的项目中,这样能加快学习的效率,也可以免费使用paddle的GPU资源,有更好的产出和应用部署。

2022-12-09 20:25:08 925 1

转载 Paddle 点灯人 之 10分钟快速上手Paddle

飞桨在下内置了计算机视觉(Computer Vision,CV)领域常见的数据集,如 MNIST、Cifar10、Cifar100、FashionMNIST 和 VOC2012 等。在本任务中,先后加载了 MNIST 训练集()和测试集(),训练集用于训练模型,测试集用于评估模型效果。

2022-12-08 17:07:39 464 2

原创 基于PaddleOCR的集装箱箱号检测识别

国际航运咨询分析机构 Alphaliner 在今年 3 月公布的一组数据,2021 年集装箱吞吐量排名前 30 的榜单中,上海港以 4702.5 万标箱的「成绩单」雄踞鳌头。较上一年同期,上海港集装箱吞吐量增长 8.1%与最近的竞争对手新加坡拉开了近 1000 万标准箱的差距全球百大集装箱港口,更是在 2021 年共完成集装箱吞吐量 6.76 亿 TEU。**如此大规模的集装箱数量,使得箱号识别的压力骤增,**传统的由人对集装箱号进行识别记录的方式成本高、效率低,运营条件落后。随着经济和社会的发展,在港口经

2022-11-22 21:00:59 1447

原创 第十四届蓝桥杯第二期模拟赛 【python】

答案仅供参考哦,不要全信哈哈,应该是全部完成,最后一题第十题应该也是标程,真不错!!!祝大家都能马到成功2022/11/22 模拟赛前5道填空题已更新完成,6-8题酌情写完,其他先放着,等有空看看2022/11/24 早上顺手把第9题写完了,只剩下第十题2022/11/24 不想空着,也用树状数组把最后第十题给解决了,完美收官。

2022-11-22 16:28:56 1131 4

原创 漫画风格迁移神器 AnimeGANv2:快速生成你的漫画形象

趁着有空的时间,给大家介绍一些有趣的项目吧,比如这个漫画风格迁移神器 AnimeGANv2,可以快速生成自己的漫画形象

2022-11-21 09:00:00 2886

原创 PyTorch中,18个速度和内存效率优化技巧

深度学习模型的训练/推理过程涉及很多步骤。在有限的时间和资源条件下,每个迭代的速度越快,整个模型的预测性能就越快。我收集了几个PyTorch技巧,以最大化内存使用效率和最小化运行时间。为了更好地利用这些技巧,我们还需要理解它们如何以及为什么有效。我首先提供一个完整的列表和一些代码片段,这样你就可以开始优化你的脚本了。然后我一个一个地详细地研究它们。对于每个技巧,我还提供了代码片段和注释,告诉你它是特定于设备类型(CPU/GPU)还是模型类型。

2022-11-20 20:53:28 399

原创 服务器设置 SSH 通过密钥登录

今后,当你使用 PuTTY 登录时,可以在左侧的 Connection -> SSH -> Auth 中的 Private key file for authentication: 处选择你的私钥文件,然后即可登录了,过程中只需输入密钥锁码即可。这一部分相当于,将自己的公钥写到了ssh服务器中,写到authorized_keys中,这样只要有密钥对,就能正常连接,VScode也是。下面来讲解如何在 Linux 服务器上制作密钥对,将公钥添加给账户,设置 SSH,最后通过客户端登录。如此便完成了公钥的安装。

2022-11-20 18:42:45 534

原创 Pytorch CIFAR10图像分类 MobileNetv2篇

MobileNet v2网络是由google团队在2018年提出的,**相比MobileNet V1网络,准确率更高,模型更小**。刚刚说了MobileNet v1网络中的亮点是DW卷积,那么在MobileNet v2中的亮点就是**Inverted residual block(倒残差结构)**,如下下图所示,左侧是ResNet网络中的残差结构,右侧就是MobileNet v2中的倒残差结构。**在残差结构中是1x1卷积降维->3x3卷积->1x1卷积升维,在倒残差结构中正好相反,是1x1卷积升维->3x

2022-11-20 11:20:05 601

原创 Keras CIFAR-10 分类汇总篇

keras是python深度学习中常用的一个学习框架,它有着极其强大的功能,基本能用于常用的各个模型。接下来我会分别利用深度学习的方法,用Keras实现我们的CIFAR10的图像分类大概预计的模型有LeNet,AlexNet,VGG,GoogLeNet,ResNet,DenseNet,MobileNet,Vision Transformer, ResNeXt等,除此之外也会陆续补充希望这能够帮助初学深度学习的同学一个入门深度学习的项目和在这之中更加了解Keras和tensorflow和各个图像分类的

2022-11-15 08:47:39 324

原创 Pytorch CIFAR10图像分类 工具函数utils更新v2.0篇

对于上一版的工具函数utils.py,我认为可能来说,可视化的感觉还是不是很好,所以我就修改了一下我新的训练函数,为了兼容,参数基本相同,但是加入了tqdm来可视化进度条,这样也会更加的好看和直观,并且统一了一些代码的格式,使得代码稍微好看点,之前有时候有点乱,除此为了兼容一些情况,修改了部分代码,但是意义相同。如果想看上一版的工具函数utils.py,可以查看这篇博客。

2022-11-14 21:58:23 603

原创 Keras CIFAR-10图像分类 DenseNet 篇

Keras CIFAR-10图像分类 DenseNet 篇,之前的ResNet通过前层与后层的“短路连接”(Shortcuts),加强了前后层之间的信息流通,在一定程度上缓解了梯度消失现象,从而**可以将神经网络搭建得很深**。更进一步,DenseNet最大化了这种前后层信息交流,通过建立**前面所有层与后面层的密集连接**,实现了特征在通道维度上的复用,使其可以在参数与计算量更少的情况下实现比ResNet更优的性能。

2022-11-14 09:00:00 167

原创 Keras CIFAR-10图像分类 VGG 篇

VGG 是一个很经典的卷积神经网络结构,是由 AlexNet 改进的,相比于 AlexNet,主要的改变有两个地方:使用 3 x 3 卷积核代替 AlexNet 中的大卷积核,使用 2 x 2 池化核代替 AlexNet 的 3 x 3 池化核- VGGNet 有很多类型,论文中提出了 4 种不同层次的网络结构(从 11 层到 19 层)- VGG 有很多优点,最本质的特点就是用小的卷积核(3x3)代替大的卷积核,2个 3x3 卷积堆叠等于1个 5x5 卷积,3 个 3x3 堆叠等

2022-11-13 08:41:39 198

原创 Keras CIFAR-10图像分类 ResNet 篇

当大家还在惊叹 GoogLeNet 的 inception 结构的时候,微软亚洲研究院的研究员已经在设计更深但结构更加简单的网络 ResNet,并且凭借这个网络斩获当年ImageNet竞赛中分类任务除了用pytorch可以进行图像分类之外,我们也可以利用tensorflow来进行图像分类,其中利用tensorflow的后端keras更是尤为简单,接下来我们就利用keras对CIFAR10数据集进行分类。keras是python深度学习中常用的一个学习框架,它有着极其强大的功能,基本能用于常用的各个模型。

2022-11-13 08:40:40 445

原创 第十四届蓝桥杯第一期模拟赛 python

蓝桥杯官方给了一个机会给我们可以尝试这个第一期模拟赛,那我们就试一下吧,学习学习一下,也给大家一点借鉴嘻嘻,也都不一定对哦,仅供参考。2022/11/8,填空题已完成2022/11/9,已做678,剩下9,102022/11/12,9更新2022/11/16,10更新,已全部完成2022/11/17,更新2不用库的做法

2022-11-09 13:09:13 8052 40

原创 GAN Step By Step -- Step6 LSGAN

LSGANs 这篇经典的论文主要工作是 把交叉熵损失函数换做了最小二乘损失函数 ,这样做作者认为改善了传统 GAN 的两个问题,即传统 GAN 生成的图片质量不高,而且训练过程十分不稳定。LSGANs 试图使用不同的距离度量来构建一个更加稳定而且收敛更快的,生成质量高的对抗网络。

2022-10-13 08:23:11 217

原创 GAN Step By Step -- Step5 ACGAN

ACGAN的全称叫Auxiliary Classifier Generative Adversarial Network,翻译过来很简单,就是带有辅助分类器的GAN其实他的思想和CGAN很想,也是利用label的信息作为噪声的输入的条件概率,但是相比较于CGAN,ACGAN在设计上更为巧妙,他很好地利用了判别器使得不但可以判别真假,也可以判别类别,通过对生成图像类别的判断,判别器可以更好地传递loss函数使得生成器能够更加准确地找到label对应的噪声分布。

2022-10-05 08:00:00 477

【程序员面试必备】动画详解十大经典排序算法(内含代码)

排序算法是程序员必备的基础知识,弄明白它们的原理和实现很有必要。本文中将通过非常细节的动画展示出算法的原理,配合代码更容易理解。 由于待排序的元素数量不同,使得排序过程中涉及的存储器不同,可将排序方法分为两类:一类是内部排序,指的是待排序列存放在计算机随机存储器中进行的排序过程;另一类是外部排序,指的是待排序的元素的数量很大,以致内存一次不能容纳全部记录,在排序过程中尚需对外存进行访问的排序过程。

2022-04-13

Coursera-ML-using-matlab-python.rar

coursera吴恩达机器学习课程作业自写Python版本,使用jupyter notebook实现,使代码更有层次感,可读性强。 本repository实现算法包括如下: 线性回归: linear_regression.ipynb 多元线性回归:linear_multiple.ipynb 逻辑回归:logic_regression.ipynb 正则化用于逻辑回归: logic_regularization.ipynb 模型诊断+学习曲线: learnCurve.ipynb 一对多分类模型:oneVSall.ipynb 神经网络模型:neuralNetwork.ipynb SVM分类器:svm.ipynb kmeans聚类:kmeans.ipynb pca降维:pca.ipynb 高斯分布用于异常检测:anomaly_detection.ipynb 协调过滤推荐算法:Collaborative_Filter.ipynb

2022-04-13

对于吴恩达机器学习的学习笔记

本课程提供了一个广泛的介绍机器学习、数据挖掘、统计模式识别的课程。主题包括: (一)监督学习(参数/非参数算法,支持向量机,核函数,神经网络)。 (二)无监督学习(聚类,降维,推荐系统,深入学习推荐)。 (三)在机器学习的最佳实践(偏差/方差理论;在机器学习和人工智能创新过程)。 里面包含了自己的学习笔记,希望对你们有帮助

2022-04-13

Yolov2 pytorch版本

YOLOv2pytorch版本实现,可以运行结果进行目标检测等多种方法

2022-04-13

深度学习中的目标检测YOLOX代码以及权重

1、YOLOX-L和YOLOv4-CSP、YOLOv5-L有差不多参数量的情况下,YOLOX-L在COCO上取得50.0%AP(比YOLOv5-L高出1.8%的AP),且YOLOX-L在单张Tesla V100上能达到68.9FPS。 2、YOLOX-Tiny和YOLOX-Nano(只有0.91M参数量和1.08G FLOPs)比对应的YOLOv4-Tiny和NanoDet3分别高出10% AP和1.8% AP 3、在Streaming Perception Challenge (Workshop on Autonomous Driving at CVPR 2021) 只使用YOLOX-L模型取得第一名。 并且其中有源码提供了ONNX, TensorRT, NCNN, and Openvino版本

2022-03-23

各大联赛,欧冠,世界杯数据集.rar

各大联赛,欧冠,世界杯数据集.rar

2022-03-23

Pytorch对CIFAR10的图像分类全套代码(包含多个模型)

用Pytorch实现我们的CIFAR10的图像分类 模型有LeNet,AlexNet,VGG,GoogLeNet,ResNet,DenseNet 在资源中有全部代码的学习资料,并且包括所有的权重,代码所有都可运行,可执行,可复现代码的结果 可以利用所有的模型权重进行迁移学习 除此之外,还有所有迁移学习的代码,可以利用迁移学习的代码对猫狗数据集进行训练学习

2022-03-23

Kaggle猫狗大战dogs-vs-cats数据集全套以及图像分类代码

有猫狗大战数据集,其中有训练集20000张,验证集5000张,测试集有10000张 并且配套有迁移学习的代码可以对猫狗数据集进行运行图像分类 运行方法很简答,可以利用命令行运行,不需要构建模型,自动利用pytorch内置模型简单方便

2022-03-23

CIFAR-10分类工具函数utils.py

Pytorch CIFAR-10分类工具函数

2021-11-28

Pytorch CIFAR-10分类(DenseNet).ipynb

Pytorch CIFAR-10分类(DenseNet)

2021-11-28

Pytorch CIFAR-10分类(ResNet34).ipynb

Pytorch CIFAR-10分类(ResNet34)

2021-11-28

Pytorch CIFAR-10分类(LeNet5).ipynb

Pytorch CIFAR-10分类(LeNet5)

2021-10-02

Pytorch CIFAR-10分类(AlexNet).ipynb

Pytorch CIFAR-10分类(AlexNet)

2021-10-02

tensorflow-2.3.0-cp38-cp38-win_amd64_cpu_and_gpu.rar

这里面有tensorflow2.3的cpu和gpu两个版本的轮子,可以直接解压下来,就可以pip安装这个轮子whl了

2021-05-13

cifar-10-python.tar

CIFAR-10 是由 Hinton 的学生 Alex Krizhevsky 和 Ilya Sutskever 整理的一个用于识别普适物体的小型数据集。一共包含 10 个类别的 RGB 彩色图 片:飞机( a叩lane )、汽车( automobile )、鸟类( bird )、猫( cat )、鹿( deer )、狗( dog )、蛙类( frog )、马( horse )、船( ship )和卡车( truck )。图片的尺寸为 32×32 ,数据集中一共有 50000 张训练圄片和 10000 张测试图片。 与 MNIST 数据集中目比, CIFAR-10 具有以下不同点: • CIFAR-10 是 3 通道的彩色 RGB 图像,而 MNIST 是灰度图像。 • CIFAR-10 的图片尺寸为 32×32, 而 MNIST 的图片尺寸为 28×28,比 MNIST 稍大。 • 相比于手写字符, CIFAR-10 含有的是现实世界中真实的物体,不仅噪声很大,而且物体的比例、 特征都不尽相同,这为识别带来很大困难。 直接的线性模型如 Softmax 在 CIFAR-10 上表现得很差。

2021-05-13

img_align_celeba2.zip

CelebA是CelebFaces Attribute的缩写,意即名人人脸属性数据集,其包含10,177个名人身份的202,599张人脸图片,每张图片都做好了特征标记,包含人脸bbox标注框、5个人脸特征点坐标以及40个属性标记,CelebA由香港中文大学开放提供,广泛用于人脸相关的计算机视觉训练任务,可用于人脸属性标识训练、人脸检测训练以及landmark标记等 由于文件太大,所以分两个文件上传,,一个文件100,000图片,另一个102,599张图片,都在我的数据中

2021-04-06

img_align_celeba1.zip

CelebA是CelebFaces Attribute的缩写,意即名人人脸属性数据集,其包含10,177个名人身份的202,599张人脸图片,每张图片都做好了特征标记,包含人脸bbox标注框、5个人脸特征点坐标以及40个属性标记,CelebA由香港中文大学开放提供,广泛用于人脸相关的计算机视觉训练任务,可用于人脸属性标识训练、人脸检测训练以及landmark标记等 由于文件太大,所以分两个文件上传,,一个文件100,000图片,另一个102,599张图片,都在我的数据中

2021-04-06

MNIST_data.rar

MNIST数据集是机器学习领域中非常经典的一个数据集,由60000个训练样本和10000个测试样本组成,每个样本都是一张28 * 28像素的灰度手写数字图片 一共4个文件,训练集、训练集标签、测试集、测试集标签

2021-04-05

andrew_ml_ex7.zip

吴恩达机器学习ex7K-means Clustering and Principal Component Analysis数据集

2021-04-04

andrew_ml_ex6.zip

吴恩达机器学习ex6Support Vector Machines数据集

2021-04-04

基于CIFAR10 MAE的实现(含模型权重,TensorBoard可视化等)

由于可用资源有限,我们仅在 cifar10 上测试模型。 我们主要想重现这样的结果: 使用 MAE 预训练 ViT 可以比直接使用标签进行监督学习训练获得更好的结果。这应该是自我监督学习比监督学习更有效的数据的证据。 主要遵循论文中的实现细节

2022-10-12

口罩目标检测数据集(已标注好,VOC格式)

使用yolo进行口罩检测 里面包含口罩目标检测数据集(已标注好,VOC格式) xml文件和jpg文件都放在文件夹中,可以根据自己格式进行运行

2022-05-22

CRNN完整源码实现--用PyTorch攻陷文字识别

CRNN-Pytorch 记录CRNN的学习 CRNN是2015年提出的一种,端对端的,场景文字识别方法,它采用CNN与RNN的结合来进行学习。它相对于其他算法主要有以下两个特点: 端对端训练,直接输入图片给出结果,而不是把多个训练好的模型进行组合来识别 不需要对图片中的文字进行分割就可以进行识别,可以适应任意长度的序列 里面包括所有的代码,可以进行训练,本代码是训练了IIIIT-5k的数据集,得到了模型在文件夹内,可以进行训练和预测 除此之外,ipynb文件中,利用pytorch搭建CRNN,对验证码进行识别,准确率都是很不错的,达到很不错的结果,可以自定图片和网络结构

2022-05-18

Keras对CIFAR10的图像分类全套代码(包含多个模型)

利用tensorflow的后端Keras实现我们的CIFAR10的图像分类 keras简单易懂,代码量和工程都不大,可以自动利用GPU进行训练,调节显存的大小 模型有LeNet,AlexNet,VGG,GoogLeNet,ResNet,DenseNet等等 也可以通过进行可视化输出结果,也含有数据增强等方法提高准确率 在资源中有全部代码的学习资料,并且包括所有的权重,代码所有都可运行,可执行,可复现代码的结果 可以利用所有的模型权重进行迁移学习,利用自己的数据集进行运行得到结果都是可以的

2022-05-17

大数据驱动的深度模型在图像分类中的应用(VGG16+VGG19图像分类,源码结果都可运行)

简述VGG模型,说明其中的结构(描述模型的结构,哪一层是卷积、那一层是池化、那一层是全连接?),并使用VGG模型完成下面图像分类的实验(建议使用Python语言,Pytorch 框架)。图像分类数据集:CIFAR-10,由10个类的60000个32x32彩色图像组成,每个类有6000个图像;有50000个训练样本(训练集)和10000个测试样本(测试集) 分别使用数据集中训练集的1%、10%、50%、80%样本进行训练模型,使用测试样本进行测试,简述步骤并对比使用不同比例的训练样本对于训练结果的影响(即模型训练完成后,使用测试样本输入模型得到的准确率)。随着数据量的增大,观察每一次模型迭代(模型每完成一次迭代,即所有训练样本输入到模型中进行训练更新)所需的计算时间、内存消耗变化,并做比较。分析试验结果,回答下面问题: A. 说明你实验的硬件环境 B. 说明自己程序中使用的是哪种梯度下降算法(随机、批量、全部)? C. 训练过程中你调整了哪些参数,谈谈你的调参过程和调参技巧 D. 当数据量逐渐变大时,你的训练测试过程有没遇到实质性困难?

2022-05-17

GAN探索之数字样本生成(Pytorch实现LeNet网络进行对抗比较)

数字对抗样本生成 LeNet是一个小型的神经网络结构,仅包含两层卷积层、两个池化层以及三层全连接。该轻量级网络能快速、占内存小、高精确度的解决复杂度比较低的问题,如手写数字识别。本实验要求: (步骤1)用LeNet网络完成手写数字识别任务。 (步骤2)利用对抗样本工具包生成针对该网络的对抗样本。 首先简要介绍了GAN的原理,通俗易懂 我简要实现了这一部分,并且包括每一部分的数字可视化功能,包括LeNet模型的构建,以及对于LeNet的超参数的调节和一些方法,最后也把模型权重保存下来,不用训练也可以直接用。 在步骤二中,生成针对该网络的对抗样本。做了威胁模型,快速梯度符号攻击,定义扰动上限 epsilons,被攻击的模型,FGSM 攻击方式,测试函数的操作 最后启动攻击,得到对抗结果,最后比较准确性 vs Epsilon,就得到最后的实验结果。 所有的介绍和方法和代码都是可以直接运行的

2022-05-17

Implements of MATAB神经网络30个案例分析

Implements of MATAB神经网络30个案例分析 《MATAB神经网络30个案例分析》中各个章节的代码实现 里面包含着各个经典的模型,里面含有对应的代码可以进行学习和复现结果

2022-05-15

中文情感分析 Python

中文情感分析的实质是文本分类问题,本项目分别采用CNN和BI-LSTM两种模型解决文本分类任务,并用于情感分析,达到不错的效果。 两种模型在小数据集上训练,在验证集的准确率、号回率及F1因子均接近90% 项目设计的目标可以接受不同语料的多种分类任务,只要语料按照特定格式准备好,就可以开始调参训练、导出、serving。

2022-05-15

机器学习、NLP面试中常考到的知识点和代码实现

此项目是机器学习、NLP面试中常考到的知识点和代码实现,也是作为一个算法工程师必会的理论基础知识。 既然是以面试为主要目的,亦不可以篇概全,请谅解,有问题可提出。 此项目以各个模块为切入点,让大家有一个清晰的知识体系。 此项目亦可拿来常读、常记以及面试时复习之用。 每一章里的问题都是面试时有可能问到的知识点,结尾处都有算法的实战代码案例。

2022-05-15

利用Python opencv进行车牌识别

这包括以下内容,可以自行配置环境,并且利用opencv和百度的api进行一个简单的车牌识别,简单又有效 车牌搜索识别找出某个车牌号 对比识别车牌系统 车牌数据库认证系统 车牌图文搜索系统 车牌数据库搜索系统 文件图片识别车牌 网络图片地址识别车牌 实时截图识别车牌 图片自适应窗口大小 摄像头拍照识别车牌 使用 hyperlpr 提高识别率

2022-05-13

Keras和Tensorflow 对CIFAR10的图像分类(包含多个模型)

用Keras实现我们的CIFAR10的图像分类 模型有LeNet,Network_in_Network,VGG,GoogLeNet,ResNet,ResNeXt,DenseNet,SENet还有Multi-GPU的方式 在资源中有全部代码的学习资料,并且包括所有的权重,代码所有都可运行,可执行,可复现代码的结果,进行了一个简单的比较各个模型在cifar10的数据的结果 除此之外,也搭载了可视化的功能,能够对数据有一个更加清晰的认识

2022-05-13

快速上手Transfomer全套资料-为 Jax、PyTorch 和 TensorFlow 打造的先进的自然语言处理

Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨让最先进的 NLP 技术人人易用。 Transformers 提供了便于快速下载和使用的API,让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 model hub 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。 Transformers 支持三个最热门的深度学习库: Jax, PyTorch and TensorFlow — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。

2022-05-11

数学公式识别 Math Formula OCR 识别LaTex

利用深度学习模型的注意力机制 对LaTex公式进行识别,本项目利用的是tensorflow 可以快速识别图片的latex公式,可以免除打LaTex公式太烦等 包括以下部分 1. 搭建环境 Linux Mac 2. 开始训练 生成小数据集、训练、评价 生成完整数据集、训练、评价 3. 可视化 可视化训练过程 可视化预测过程 4. 评价 5. 模型的具体实现细节 总述 数据获取和数据处理 模型构建 6. 踩坑记录 win10 用 GPU 加速训练 如何可视化Attention层

2022-05-07

利用CNN进行字符型图片验证码识别

use CNN recognize captcha by tensorflow. 本项目针对字符型图片验证码,使用tensorflow实现卷积神经网络,进行验证码识别。 项目封装了比较通用的校验、训练、验证、识别、API模块,极大的减少了识别字符型验证码花费的时间和精力。 里面有项目介绍和种种验证码识别的方法,可以快速部署到项目之中,或者对其进行改进和加强,都是很方便的,希望对你们有帮助

2022-05-06

手写算法实现xgboost(并与库模型进行比较)

Boosting 方法的主要⽬标是将弱分类器“提升” 为强分类器,根据前⼀个弱分类器的训练效果对样本分布进行调整,再根据新的样本分布训练下⼀个弱分类器,如此迭代,最后将⼀系列弱分类器组合成⼀个强分类器。 XGBoost是boosting算法的其中一种。Boosting算法的思想是将许多弱分类器集成在一起形成一个强分类器。因为XGBoost是一种提升树模型,所以它是将许多树模型集成在一起,形成一个很强的分类器。 手写xgboost算法,几乎实现xgboost的所有算法,之中有与xgboost库进行比较xgboos的性能和方法,结果是差不多的,达到了预期的要求,简单的数据集也放在了上面。 并且这之中包括详细的注释,也包括了很多有关于xgboost的原理,是我手写xgboost算法之中做的一些记录和笔记,这里面也有对数据集的种种可视化,数据集也在文件里面。

2022-05-06

10行代码搞定一个决策树

这是一个简单的实验,要求也特别简单 产生数据集:使用某种随机生成器产生10万个101维向量(每个分量非0即1);其中每个向量的1-100维是条件属性,第101维是决策属性。 将数据集按照8:2随机划分为训练集(80%)和测试集(20%) 包括十行代码搞定决策树的全套代码 并且齐全的包括所有树的可视化等等 保证可运行可复现结果。

2022-05-06

Pytorch实现数字对抗样本生成全套代码(GAN)

利用GAN的思想,进行数字对抗样本生成,以LeNet作为图像分类模型,LeNet是一个小型的神经网络结构,仅包含两层卷积层、两个池化层以及三层全连接。该轻量级网络能快速、占内存小、高精确度的解决复杂度比较低的问题,如手写数字识别。 (步骤1)用LeNet网络完成手写数字识别任务。 (步骤2)利用对抗样本工具包生成针对该网络的对抗样本。 整体包括一下部分 步骤1:用`LeNet网络`完成手写数字识别任务。 LeNet 网络 数据集的下载和预处理 Image displaying pytorch 搭建LeNet LetNet 训练 超参数的设置 训练及测试模型 可视化误差曲线,准确率曲线 结果可视化,查看每一类的准确率 模型的保存与加载 步骤2:生成针对该网络的对抗样本。 威胁模型 快速梯度符号攻击 定义扰动上限 epsilons 被攻击的模型 FGSM 攻击方式 测试函数 启动攻击 对抗结果 准确性 vs Epsilon 样本对抗性示例

2022-05-06

利用pytorch对CIFAR数据进行图像分类(包含全套代码和10+个模型的实现)

用Pytorch实现我们的CIFAR10的图像分类 模型有LeNet,AlexNet,VGG,GoogLeNet,ResNet,DenseNet,Efficientnet,MobileNet,MobileNetv2,ResNeXt,Pnasnet,RegNet,SeNet,ShuffleNet,ShuffleNetv2,Preact_ResNet,DPN,DLA 在models中有所有模型的实现,然后在main.py中定义了训练的代码,也可以进行预测我们的结果,除此之外,对所有的模型自己进行了测试,并且对准确率做了一个详细的比较,也可以根据此进行测试和比较训练。 在资源中有全部代码的学习资料,代码所有都可运行,可执行,可复现

2022-05-06

DenseNet-Cifar10 基于keras

Train the DenseNet-40-10 on Cifar-10 dataset with data augmentation. 做了数据及增强等操作 并且是一个完整的工程文件 包括cifar的预测训练等功能,自主训练即可,代码易懂

2022-05-06

八种最常用的GAN生成式对抗网络代码框架

包括多种GAN生成试对抗网络代码框架 ACGAN.py BEGAN.py CGAN.py CVAE.py DRAGAN.py EBGAN.py GAN.py LSGAN.py VAE.py WGAN.py WGAN_GP.py infoGAN.py

2022-04-13

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除