给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。
你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1
示例 2:
输入:coins = [2], amount = 3
输出:-1
示例 3:
输入:coins = [1], amount = 0
输出:0
示例 4:
输入:coins = [1], amount = 1
输出:1
示例 5:
输入:coins = [1], amount = 2
输出:2
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
vector<int>dp(amount+1, amount+1);
dp[0]=0;
for(int i=0;i<dp.size();i++){
for(int coin:coins){
if(i-coin<0) continue;
dp[i]=min(dp[i], dp[i-coin]+1);
}
}
return dp[amount]==amount+1?-1:dp[amount];
}
};
给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。
示例 1:
输入: amount = 5, coins = [1, 2, 5]
输出: 4
解释: 有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
示例 2:
输入: amount = 3, coins = [2]
输出: 0
解释: 只用面额2的硬币不能凑成总金额3。
示例 3:
输入: amount = 10, coins = [10]
输出: 1
注意:
你可以假设:
0 <= amount (总金额) <= 5000
1 <= coin (硬币面额) <= 5000
硬币种类不超过 500 种
结果符合 32 位符号整数
class Solution {
public:
int change(int amount, vector<int>& coins) {
int n=coins.size();
vector<vector<int>> dp(n+1, vector<int>(amount+1, 0));
for(int i=0;i<=n;i++){
dp[i][0]=1;
}
for(int i=1;i<=n;i++){
for(int j=1;j<=amount;j++){
if(j-coins[i-1]<0){
dp[i][j]=dp[i-1][j];
}else{
dp[i][j]=dp[i-1][j]+dp[i][j-coins[i-1]];
}
}
}
return dp[n][amount];
}
};