零钱兑换

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。

你可以认为每种硬币的数量是无限的。

 

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3 
解释:11 = 5 + 5 + 1
示例 2:

输入:coins = [2], amount = 3
输出:-1
示例 3:

输入:coins = [1], amount = 0
输出:0
示例 4:

输入:coins = [1], amount = 1
输出:1
示例 5:

输入:coins = [1], amount = 2
输出:2
 

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int>dp(amount+1, amount+1);
        dp[0]=0;
        for(int i=0;i<dp.size();i++){
            for(int coin:coins){
                if(i-coin<0) continue;
                dp[i]=min(dp[i], dp[i-coin]+1);
            }
        }
        return dp[amount]==amount+1?-1:dp[amount];
    }
};

 

 

给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。 

 

示例 1:

输入: amount = 5, coins = [1, 2, 5]
输出: 4
解释: 有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
示例 2:

输入: amount = 3, coins = [2]
输出: 0
解释: 只用面额2的硬币不能凑成总金额3。
示例 3:

输入: amount = 10, coins = [10] 
输出: 1
 

注意:

你可以假设:

0 <= amount (总金额) <= 5000
1 <= coin (硬币面额) <= 5000
硬币种类不超过 500 种
结果符合 32 位符号整数

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        int n=coins.size();
        vector<vector<int>> dp(n+1, vector<int>(amount+1, 0));
        for(int i=0;i<=n;i++){
            dp[i][0]=1;
        }
        for(int i=1;i<=n;i++){
            for(int j=1;j<=amount;j++){
                if(j-coins[i-1]<0){
                    dp[i][j]=dp[i-1][j];
                }else{
                    dp[i][j]=dp[i-1][j]+dp[i][j-coins[i-1]];
                }
            }
        }
        return dp[n][amount];
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值