纯纯的数学期望

简单

D - Deceptive Dice

传送门
题意:有一个 n 面的骰子,有 k 次掷骰子的机会,问得到最大期望是多少
做法:
k = 1,最大期望 e 就是 1 到 n 的和除 n,e = (1 + n) * n / 2 / n。
k = 2,当我掷骰子的点数 <= e,则就继续掷骰子,第二次继续掷骰子的得到的期望是需要掷骰子的概率 * e,即 (int)e / n * e,所以更新 e = (> e 的点数的期望) + (<= e点数的期望)
k = 3,第三次掷骰子的过程同上

所以可以得到一个递推的过程,每一次掷骰子的期望都是由上一步的期望得出

    cin >> n >> k;
    double e = (1.0 + n) / 2.0;
    for(int i = 2; i <= k; i ++ )
    {
        int r = int(e);
        e = 1.0 * ((1 + n) * n / 2 - (1 + r) * r / 2) / n + 1.0 * r / n * e;
    }

中等

较难

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值