汪星人来地球的博客

数学才是人工智能的正确打开方式

多元函数第六:连续函数(2)分量连续

一般的多元函数,是从Rr\mathbb{R}^rRr到Rn\mathbb{R}^nRn的函数。要研究函数fff的连续性,需要研究Rn\mathbb{R}^nRn空间的极限。特别地,当n=1n=1n=1时,函数fff是一个向量值函数,也即fff将一个向量映射成一个实数值。向量值函数,是多元函数中非常...

2019-05-19 15:16:00

阅读数 61

评论数 0

多元函数第六:连续函数(1)极限与连续

有了前面的基础,终于可以进入正题,研究多元函数本身了。分析学研究的基础是极限,而与极限密切相关的一个概念是连续。数学分析中的连续,是通过邻域定义的。在实数集R\mathbb{R}R,点xxx的邻域是包含xxx的一个开区间。将其扩展为Rn\mathbb{R}^nRn,点xxx的邻域是包含xxx的开集...

2019-04-26 12:30:01

阅读数 135

评论数 0

多元函数第五:拓扑初步(4)闭包

在拓扑初步2中,我们总结了开集闭集与边界的关系。开集是不包含任何边界点的集合,这由定义可以得到。而闭集是开集的补集,因此它必然包含所有边界点。 同时,我们也可以很直接地推得,任何包含所有边界点的集合都是闭集。这样,我们就得到了一种构造闭集的重要手段——闭包。 定义 记集合SSS的闭包为cl(S)...

2019-04-07 11:31:19

阅读数 78

评论数 0

强化学习第二:epsilon贪心算法

接着考虑前文的10臂老虎机问题。假设我们可以与老虎机交互TTT次,显然我们每次采取的行动(action)不必一成不变。记我们在ttt时刻采取行动为ata_tat​,获得的回报为R(at)R(a_t)R(at​)。那么,我们的目标是 max⁡a1,a2,...,aT∑t=1TE[R(at)]. ...

2019-03-30 10:06:45

阅读数 555

评论数 0

多元函数第五:拓扑初步(3)内部,边界与外部运算

任何集合SSS都可以定义内部int(S)int(S)int(S),边界Bd(S)Bd(S)Bd(S)和外部ext(S)ext(S)ext(S)这三个集合。而对于集合T=int(S)T=int(S)T=int(S)来说,它也有它的内部int(T)=int(int(S))int(T)=int(int(...

2019-03-29 21:33:05

阅读数 85

评论数 0

多元函数第五:拓扑初步(2)开闭集的并和交

在拓扑初步(1)中,我们给出了开集和闭集的严格定义。这些定义的基础,是开球的概念。由开球,引出了内点,外点和边界点的概念。而内点,外点和边界点的集合,分别叫做内部,外部和边界。开集和闭集的概念,与边界紧密相关。如果一个集合不包含任何边界点,那么这个集合被称作开集。那么,我们可以很容易猜想,闭集就是...

2019-03-07 12:16:36

阅读数 159

评论数 0

多元函数第五:拓扑初步(1):开集,闭集,内部,边界,外部

计算机专业的人,知道拓扑学的,寥寥无几。在我看来,拓扑学是用代数的方法研究分析学的一门学科。类似的学科,其实还有很多,例如测度论,泛函等等。它们的共同特点是把分析学中最基本的概念进行抽象,从而得到一般的,普适性的结论。 本文首先介绍n维实数空间的拓扑性质,后面再推而广之,介绍一般的拓扑空间的性质。...

2019-02-20 12:31:54

阅读数 455

评论数 1

强化学习第一:基本概念

强化学习研究的问题,是代理(agent)与环境(environment)交互的问题。什么是代理,什么是环境,并没有严格的定义。计算机科学是一门经验主义学科。它不像数学那样有板有眼,很多概念都是从实际应用出发,因此有模棱两可的地方。一般来说,我们把不由我们控制部分叫做环境;把我们可以完全控制对部分,...

2019-02-19 12:01:40

阅读数 35

评论数 0

多元函数第四:欧式几何(2)直线,超平面,半空间,球体,球面

欧式几何中一个最基本的公理是两点确定一条直线。我们都知道,这条公理对于2维和3维空间成立。n维空间中的直线,也可以用两点x1x_1x1​和x2x_2x2​完全确定。一般地,过x1x_1x1​和x2x_2x2​的直线是由集合 {x=tx1+(1−t)x2:t∈R} \{x=tx_1+(1-t)x_2...

2019-02-10 12:48:56

阅读数 180

评论数 0

多元函数第四:欧式几何(1)柯西不等式(Cauchy不等式),三角不等式

柯西不等式是欧式几何中最基本,也是最重要的不等式。它的重要之处,不仅在于该结论本身应用之广泛;也在于它的证明思想对于其他定理的证明,有极大的借鉴意义。例如,在以后介绍的凸集的支撑超平面定理中,就会用到柯西不等式的证明思想。 柯西(Cauchy)不等式:对于n维空间上的任意两个向量xxx和yyy都有...

2019-02-07 12:35:25

阅读数 558

评论数 0

多元函数第三:线性变换(4)旋转

上一篇博文介绍了一般的等距变换。本文介绍一个特殊的等距变换,即旋转变换。这里介绍旋转,指的是二维平面上的旋转。对于n维平面,结论完全类似,只是多了几个自由度而已。 在二维平面上,对一个向量a进行旋转变换,是指将它逆时针旋转一个角度,从而得到一个新的向量a'。见图1。 图1   为了证明...

2019-02-03 13:33:21

阅读数 73

评论数 0

多元函数第三:线性变换(3)等距变换与酉矩阵

上一篇博文,介绍了线性变换矩阵与线性变换的简单关系,本文介绍一个非常特殊的线性变换矩阵,即酉矩阵。我们说一个矩阵U是酉阵,如果它是方阵,且. 显然,一个矩阵是酉阵,当且仅当它的转置是酉阵。另外,酉阵最重要的特点是,它的列(或者行)向量组成一组标准正交基。本文将介绍酉矩阵对应的线性变换,也即等距变换...

2018-11-11 22:24:31

阅读数 212

评论数 0

脚踏实地写代码(2):永远的Hello world

当我们学习一门新的语言,写的第一个代码,总是输出Hello world。这大概是源自于每个码农心目中的机器人情节。我们希望计算机能够像人类一样聪明,为人类服务。而计算机要为人服务,首先需要与人交互。Hello world是机器人向人类表达善意的第一步。 C语言的Hello world代码如下。 ...

2018-11-10 17:09:36

阅读数 89

评论数 0

脚踏实地写代码(1):说在前面

写这个系列的博文,不在计划之内。最近大部分时间都花在机器学习方面,因此数学博客写的比较多。初步的打算是循着数学分析,概率统计,最优化,随机过程这条路径展开。如果有时间的话,会再去学习泛函,拓扑学,测度论,代数,傅里叶。如果这些知识都有个全面的了解,我想机器学习没有什么方向是我们不能做的。 既然要...

2018-10-31 12:11:18

阅读数 120

评论数 0

多元函数第三:线性变换(2)线性变换矩阵

在上一篇博文中,我们介绍了线性变换的一个最基本的性质,即任何一个线性变换L,都存在唯一的矩阵M,满足L(x)=Mx。由此,建立了线性变换与矩阵的紧密联系。这样,我们也理解了,为什么在线性代数这门学科里,我们需要花费那么多的篇幅去研究矩阵。其实,研究矩阵的性质,就是在研究线性变换的性质。本文将列举一...

2018-10-02 10:51:29

阅读数 434

评论数 0

多元函数第三:线性变换(1)Rn上的线性变换

线性变换是最基本的多元函数。因此要学习多元函数,首先需要对线性变换做一个彻底的了解。本文依然从代数学的角度去阐述线性变换的性质。自从泛函分析这门学科提出以来,代数学与分析学的联系越来越紧密。因此,多学习一些代数学的知识,很有必要。代数学其实并不难学,任何的代数学系统,都不是凭空捏造的。它只是我们熟...

2018-08-22 12:33:45

阅读数 312

评论数 0

多元函数第二:线性空间(4)基的构造

在前面的博文中,我们知道,一组基可以生成一个空间,我们称这样的空间为这组基的生成空间。于是,我们很自然地会疑问,对于给定的一个空间,我们如何去构造出它的基? 对于一般的空间,要构造它的基不是那么简单的事情。因为当空间的维数无限时,许多性质与有限维空间不一样了。因此,我们这里考虑的空间,都是n维实...

2018-08-15 12:33:06

阅读数 332

评论数 0

多元函数第二:线性空间(3)线性独立与交换定理

交换定理是线性代数中我最喜欢的定理之一。因为我看了四五遍,才把定理的证明弄明白。所以,如果这篇文章第一遍没有看懂。不用灰心,那不能说明你智商有问题。如果你一遍就看懂了,那也别骄傲,那是我写得好的缘故。   在介绍交换定理之前,首先需要介绍线性独立的概念。这是线性代数最基本的概念。但是,很多国内...

2018-08-09 12:39:23

阅读数 456

评论数 0

多元函数第二:线性空间(2)子空间与生成空间

线性空间(1)为线性空间给出了公理化的定义,关于线性空间的所有性质,都是由这个公理化的定义推导而得的。本文首先介绍线性空间的几个基本性质,并根据这些性质引出子空间和生成空间的概念。 引理1. 对线性空间V中的任意向量v都有,这里0是域F上的加法幺元,0是V上的加法幺元(记住V是一个阿贝尔加法群)...

2018-08-05 16:12:54

阅读数 802

评论数 0

多元函数第二:线性空间(1)定义

线性空间是属于线性代数研究的对象。之所以也放在多元函数专题中,是为了主题的连续性。否则一会多元函数,一会线性代数,太乱了。更何况,数学的各个分支学科本就是相互渗透,融合。将各个学科刻意地孤立,除了让人更加困惑,别无他用。我在学习数学时,常常遇到看不下去的情况。之所以看不下去,是因为预备知识掌握得不...

2018-08-04 20:57:42

阅读数 147

评论数 0

提示
确定要删除当前文章?
取消 删除