[LOJ3054] 「HNOI2019」鱼

[LOJ3054] 「HNOI2019」鱼

链接

链接

题解

首先想 O ( n 3 ) O(n^3) O(n3) 的暴力,不难发现枚举 A A A D D D 后, ( B , C ) (B,C) (B,C) ( E , F ) (E,F) (E,F) 两组点互相之间没有影响,因此可以分开计算,对于任意一组点,枚举其中一个点,另一个点即为枚举的点关于 A D AD AD 的对称点,暴力统计即可

然后首先考虑 ( E , F ) (E,F) (E,F) 一组点。由于有 ∠ A D E , ∠ A D F > 90 ° \angle ADE, \angle ADF \gt 90 \degree ADE,ADF>90° 的限制,那么 E , F E,F E,F 两个点被限制在一个半平面内。考虑先枚举 D D D 再按照极角序枚举 A A A,那么每个点进入可用半平面一次离开可用半平面一次,复杂度 O ( n 2 ) O(n^2) O(n2)

下面考虑 ( B , C ) (B, C) (B,C) 一组点。如果 A , D A,D A,D 确定了,那么相当于确定了 B C BC BC 的斜率。可以预处理枚举所有的 B , C B,C B,C 并按斜率归类,并且由于每一组 B , C B,C B,C 的斜率都相同,那么其所能对应的 A D AD AD 的斜率也相同,又 B C BC BC 的中点在 A D AD AD 上,所以对于确定的 B C BC BC 可以确定出 A D AD AD 所在直线。按照所在直线归类,每一类中按照 B C BC BC 的中点的 x x x 坐标排序,那么当 A D AD AD 确定时,仅需在其对应的一类中查询中点坐标在 A D AD AD 之间的所有 B , C B,C B,C 并统计个数,可以二分出结果,复杂度 O ( n 2 log ⁡ n 2 ) O(n^2\log n^2) O(n2logn2)

代码

// Copyright lzt
#include <stdio.h>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <cmath>
#include <iostream>
#include <queue>
#include <string>
#include <ctime>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef long double ld;
typedef unsigned long long ull;
typedef pair<long long, long long> pll;
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define rep(i, j, k) for (register int i = (int)(j); i <= (int)(k); i++)
#define rrep(i, j, k) for (register int i = (int)(j); i >= (int)(k); i--)
#define Debug(...) fprintf(stderr, __VA_ARGS__)

inline ll read()
{
  ll x = 0, f = 1;
  char ch = getchar();
  while (ch < '0' || ch > '9')
  {
    if (ch == '-')
      f = -1;
    ch = getchar();
  }
  while (ch <= '9' && ch >= '0')
  {
    x = 10 * x + ch - '0';
    ch = getchar();
  }
  return x * f;
}
struct P
{
  long long x, y;
  long long len() { return 1ll * x * x + 1ll * y * y; }
} a[1009];

long long ans;
vector<int> p[1009][1009], v[1009][1009];
long long n, id[1009], nw, cnt[1009][1009][2], CNT, po, PO, tot, val[1000061], ID[1000061];
P dir[1000061];
bool bo[1009];

int nxt(int x) { return x == n ? 2 : x + 1; }
long long operator^(P a, P b) { return 1ll * a.x * b.y - 1ll * a.y * b.x; }
P operator-(P a, P b) { return (P){a.x - b.x, a.y - b.y}; }
P operator*(P a, int b) { return (P){a.x * b, a.y * b}; }
bool cmp(int x, int y) { return (a[x] - a[nw]).len() < (a[y] - a[nw]).len(); }
bool check(int x) { return a[x].x > a[nw].x || a[x].x == a[nw].x && a[nw].y < a[x].y; }
bool CHECK(int x) { return dir[x].x > a[nw].x || dir[x].x == a[nw].x && a[nw].y < dir[x].y; }
bool Check(P x) { return x.x > a[nw].x || x.x == a[nw].x && a[nw].y < x.y; }
bool Check2(P x) { return x.x > a[nw].x || x.x == a[nw].x && a[nw].y > x.y; }

bool CMP(int x, int y)
{
  if (check(x) ^ check(y))
    return check(x);
  return ((a[x] - a[nw]) ^ (a[y] - a[nw])) < 0;
}

bool PMC(int x, int y)
{
  if (CHECK(x) ^ CHECK(y))
    return CHECK(x);
  return ((dir[x] - a[nw]) ^ (dir[y] - a[nw])) < 0;
}

bool Cmp(P x, P y)
{
  if (Check(x) ^ Check(y))
    return Check(x);
  return ((x - a[nw]) ^ (y - a[nw])) <= 0;
}

bool Cmp2(P x, P y)
{
  if (Check2(x) ^ Check2(y))
    return Check2(x);
  return ((x - a[nw]) ^ (y - a[nw])) < 0;
}

void ins(int j)
{
  if (bo[j])
    return;
  bo[j] = 1;
  for (int k = 0, sz = v[nw][j].size(); k < sz; k++)
    if (bo[v[nw][j][k]])
      CNT++;
}
void del(int j)
{
  if (!bo[j])
    return;
  bo[j] = 0;
  for (int k = 0, sz = v[nw][j].size(); k < sz; k++)
    if (bo[v[nw][j][k]])
      CNT--;
}

int main()
{
  scanf("%lld", &n), ans = 0;
  for (int i = 1; i <= n; i++)
    scanf("%lld%lld", &a[i].x, &a[i].y);
  for (int i = 1; i <= n; i++)
  {
    for (int j = 1; j <= n; j++)
      id[j] = j;
    nw = i, sort(id + 1, id + 1 + n, cmp);
    for (int j = 2; j <= n; j++)
      for (int k = j - 1; (a[id[j]] - a[nw]).len() == (a[id[k]] - a[nw]).len(); k--)
        if (((a[id[j]] - a[nw]) ^ (a[id[k]] - a[nw])) != 0)
        {
          tot = 0;
          if (id[j] > id[k])
            swap(j, k), tot = 1;
          p[id[j]][id[k]].push_back(i), v[i][id[j]].push_back(id[k]), v[i][id[k]].push_back(id[j]);
          if (tot)
            swap(j, k);
        }
  }
  for (int i = 1; i <= n; i++)
    for (int j = i + 1; j <= n; j++)
    {
      cnt[i][j][0] = cnt[i][j][1] = 0;
      for (int k = 0, sz = p[i][j].size(); k < sz; k++)
        if (((a[i] - a[j]) ^ (a[i] - a[p[i][j][k]])) > 0)
          cnt[i][j][0]++;
        else
          cnt[i][j][1]++;
    }
  for (int i = 1; i <= n; i++)
  {
    n += 8;
    memset(bo, 0, sizeof(bo)), tot = 1;
    for (int j = 1; j <= n - 8; j++)
      if (i != j)
        id[++tot] = j;
    a[id[++tot] = (n - 7)] = (P){a[i].x + 1, a[i].y};
    a[id[++tot] = (n - 6)] = (P){a[i].x, a[i].y - 1};
    a[id[++tot] = (n - 5)] = (P){a[i].x - 1, a[i].y};
    a[id[++tot] = (n - 4)] = (P){a[i].x, a[i].y + 1};
    a[id[++tot] = (n - 3)] = (P){a[i].x + 1, a[i].y + 1};
    a[id[++tot] = (n - 2)] = (P){a[i].x + 1, a[i].y - 1};
    a[id[++tot] = (n - 1)] = (P){a[i].x - 1, a[i].y - 1};
    a[id[++tot] = n] = (P){a[i].x - 1, a[i].y + 1};
    nw = i, sort(id + 2, id + 1 + n, CMP), CNT = 0, po = n;
    for (int j = 2; j <= n; j++)
      if (a[id[j]].x > a[i].x)
        ins(id[po = j]);
    PO = 2, tot = 0;
    rep(j, 1, n) rep(k, 1, n) {
      if (j == k) continue;
    }
    rep(j, 1, n) rep(k, 1, n) {
      if (j == k) continue;
    }
    rep(j, 1, n) rep(k, 1, n) {
      if (j == k) continue;
    }
    for (int j = 1; j <= n; j++)
      for (int k = 0, sz = v[i][j].size(), X; k < sz; k++)
        if (v[i][j][k] > j)
        {
          X = v[i][j][k];
          dir[++tot] = (P){a[j].x + a[X].x - a[i].x - a[i].x, a[j].y + a[X].y - a[i].y - a[i].y};
          dir[tot] = (P){a[i].x + dir[tot].y, a[i].y - dir[tot].x};
          if (((a[j] - a[X]) ^ (a[j] - a[i])) > 0)
            val[tot] = cnt[j][X][1];
          else
            val[tot] = cnt[j][X][0];
        }
    dir[++tot] = (P){a[i].x, a[i].y + 1}, val[tot] = 0;
    dir[++tot] = (P){a[i].x + 1, a[i].y}, val[tot] = 0;
    dir[++tot] = (P){a[i].x, a[i].y - 1}, val[tot] = 0;
    dir[++tot] = (P){a[i].x - 1, a[i].y}, val[tot] = 0;
    dir[++tot] = (P){a[i].x + 1, a[i].y + 1}, val[tot] = 0;
    dir[++tot] = (P){a[i].x + 1, a[i].y - 1}, val[tot] = 0;
    dir[++tot] = (P){a[i].x - 1, a[i].y - 1}, val[tot] = 0;
    dir[++tot] = (P){a[i].x - 1, a[i].y + 1}, val[tot] = 0;
    for (int j = 1; j <= tot; j++)
      ID[j] = j;
    sort(ID + 1, ID + 1 + tot, PMC);
    int en = nxt(po);
    bool BO = 0;
    for (int j = 2; j <= n; j++)
      if (!check(id[j]) || a[id[j]].x > a[i].x)
      {
        PO = j;
        break;
      }
    for (int j = 1; j <= tot; j++)
    {
      while ((!BO || nxt(po) != en) && Cmp2((P){a[i].x * 2 - dir[ID[j]].x, dir[ID[j]].y},
                                            (P){a[id[nxt(po)]].x, a[i].y * 2 - a[id[nxt(po)]].y}))
        BO = 1, ins(id[po = nxt(po)]);
      while (PO <= n && Cmp(a[id[PO]], dir[ID[j]]))
        del(id[PO]), PO++;
      ans += 1ll * CNT * val[ID[j]];
    }
    n -= 8;
  }
  printf("%lld\n", ans * 4ll);
  return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值