Radio Basics for UHF RFID
电磁波
Everything radiates, but most things cancel.
在一般情况下,电荷和电流都会对远处的物体产生电势,但是在绝大多数情况下,正负电荷相互抵消,电流形成回路,此时,电荷和电流都不会对远处的物体产生作用。但是,当在一个环路中的电流突然启动的时候,环路中的电流并非同时存在,此时,抵消作用消失,环路就会在远处产生电势。
因此,为了能够产生稳定的电磁波, 天线中的电流通常是周期变化的。
信号电压和信号能量
信号电压可以被表述为:
V
(
t
)
=
v
0
c
o
s
(
ω
t
)
V(t)=v_0cos(\omega t)
V(t)=v0cos(ωt)
考虑平均功率:
P
a
v
g
=
v
0
2
2
R
P_{avg}=\frac{v_{0}^2}{2R}
Pavg=2Rv02
关于信号的功率,在50欧姆电阻条件下,功率的变化范围是一个很大的值。因此,我们使用10为底的对数,来间接表示信号功率的大小。我们将信号的增益,定义为dB:
G
d
B
=
10
l
o
g
P
1
P
2
G
d
B
=
10
l
o
g
V
1
2
V
2
2
=
20
l
o
g
V
1
V
2
=
20
l
o
g
I
1
I
2
G_{dB}=10~log\frac{P_1}{P_2} \\ G_{dB}=10~log\frac{V_1^2}{V_2^2}=20~log\frac{V_1}{V_2}=20~log\frac{I_1}{I_2}
GdB=10 logP2P1GdB=10 logV22V12=20 logV2V1=20 logI2I1
dB是一个相对功率单位,如果要表示一个信号的绝对功率,我们可以使用dBm,实际上dBm也是一个相对单位:
d
B
m
=
10
l
o
g
(
P
1
m
W
)
dBm=10~log(\frac{P}{1mW})
dBm=10 log(1mWP)
信息,调制和多路复用
将信息在RFID的载波上调制,长用的调制方法有DSB双边带调制。假设
m
(
t
)
m(t)
m(t)是基带信号,
c
o
s
(
ω
c
t
)
cos(\omega_c t)
cos(ωct)是载波信号,那么调制结果是二者的积,也就是:
V
(
t
)
=
m
(
t
)
⋅
c
o
s
(
ω
c
t
)
=
c
o
s
(
ω
m
t
)
⋅
c
o
s
(
ω
c
t
)
=
1
2
{
c
o
s
(
[
ω
c
+
ω
m
]
t
)
+
c
o
s
(
[
ω
c
−
ω
m
]
t
)
}
V(t)=m(t)\cdot cos(\omega_c t)=cos(\omega_m t) \cdot cos(\omega_c t)=\frac{1}{2}\{ cos([\omega_c+\omega_m]t) +cos([\omega_c-\omega_m]t)\}
V(t)=m(t)⋅cos(ωct)=cos(ωmt)⋅cos(ωct)=21{cos([ωc+ωm]t)+cos([ωc−ωm]t)}
这样的调制方式使得信号在频域上被分成了
f
c
−
f
m
f_c-f_m
fc−fm 和
f
c
+
f
m
f_c+f_m
fc+fm两路,这使得频谱被拉宽了。
在RFID中,信号通常被数字调制,常用的调制方法就是OOK调制,OOK调制方式可以用很简单的电路实现,比如二极管。
二极管的单向导电性可以对交变电流进行整流,并将所得的脉冲波使用电容储存起来,在合适的时刻打开开关,这就是OOK调制的过程。二极管通常能够被使用在1Ghz以上的频段。
若使用PIE脉冲编码调制技术,在一段数据中,0太多而1太少,那么就会导致tag断电并重启,这不利于tag工作。因此,我们需要修改编码策略。使得0和1以不同占空比的脉冲波来表示。
考虑到,当多人同时通信的时候,由于编码造成的频移,还会在频谱上出现重叠,对彼此的通信造成影响。因此不同用户使用的频率要尽可能地分开。
在OOK 调制中,接近载波频率的部分信号功率最高,但是远离载波频率的频段也同样累积了相当高的功率,符号长度越短,发送数据的速率越高,这样,我们使用的带宽就越宽。
每一个symbol的上升沿如果是突发的,那么在频域上,载波频率的副瓣就会比较明显。因此,我们想要抑制副瓣,就需要将符号出现边界进行平滑处理,但是在一般情况下,符号的长度比较短,若经过平滑处理,往往发射功率还未达到最大就开始降落。
带外辐射:如果阅读器发射的信号在ISM频带边界,那么它的一部分能量就会泄漏出去,影响到授权频带。
OOK调制信号:OOK调制信号是一种矩形波,而矩形波是一系列sinc波的叠加:
f
(
ω
)
=
2
π
s
i
n
(
ω
τ
/
2
)
ω
f(\omega)=\sqrt{\frac{2}{\pi}}\frac{sin(\omega\tau/2)}{\omega}
f(ω)=π2ωsin(ωτ/2)
f
(
ω
n
)
=
0
f
o
r
ω
n
=
2
n
π
τ
[
f
n
=
n
τ
]
,
n
≠
0
f(\omega_n)=0~for~\omega_n=\frac{2n\pi}{\tau}[f_n=\frac{n}{\tau}], n\neq 0
f(ωn)=0 for ωn=τ2nπ[fn=τn],n=0
也就是说,该函数的零点在频域上位于
1
τ
,
2
τ
,
3
τ
.
.
.
\frac{1}{\tau},\frac{2}{\tau},\frac{3}{\tau}...
τ1,τ2,τ3...等等。
总结:
调制会使得信号的频带增大,需要更大带宽的信号来抵抗干扰
RFID的特殊调制方法导致了它在频带上的低利用率,这使得数据率有所下降。
许多调制方法,例如WiFi,都使用了比脉冲调制和开关键控调制更好的调制方法,但是它通常需要在高频段检测相位变化,这是RFID 的tag做不到的。
后向散射无线电链路
在无源标签中,天线通过调制标签天线的信号反射功率来实现后向散射。而调节功率,也就是调节和标签天线相连的负载阻抗。
最简单的情况,在天线的末端连上一个晶体管,当晶体管门开启的时候,电流流通,从而实现对天线感应电流的调制。标签中的调制电路的频率是中频,而不是交高的载波频率,这降低了成本和能量。
在半双工系统中,发射机要通过开关射频的方式来实现双工系统,但是标签需要连续的信号激励才能收集能量,反射信号,这为我们的实现带来了困难。在通常情况下,发射机会在不发射信号的时候发射连续波,为天线提供载波和能量,但是这样的方法有一个缺点,就是自干扰。在信号激励端,为了更方便地实现半双工,我们会选择将发射机和接收机分开的方式,但是激励信号连续波通常会将后向散射信号完全淹没,这为一般的后向散射链路带来了挑战。
在自然环境中,由于多径反射,tag信号会受到不同程度的干扰,有些干扰的强度甚至比tag本身的信号强度还大。
然而,标签天线反射的信号对接收机接收到的信号的影响是完全不可控的。下面举两种情况的例子:当标签改变其调制的相位时,接收信号的相位有可能完全不变,而只在振幅上发生变化。当标签改变其调制的振幅时,接收信号的振幅也有可能不发生改变,同时,相位也不发生改变。我们知道的,只是如果我们对标签的振幅或者相位进行调制的时候,接收端处的相位或者振幅会发生变化。
为了达到一个好的调制效果,我们必须使得信号不会因为传播方向的变化而变化,并且同时尽量减少环境对信号的振幅和相位带来的改变。
链路预算
将数据调制并通过无线信道成功发送到接收端所消耗的能量被称为链路预算。根据数据传输方向,我们将链路预算分为两种,一种是前向链路预算,是指从阅读器到标签这条路径的链路,一条是后向链路预算,是指从标签到阅读器的链路。
要计算出链路预算,我们需要回答这么几个问题:
- 阅读器能够发射多大功率的信号?
- 考虑到距离因素,接收端可以接收到多大能量的信号?
- 标签需要多大的能量启动?
- 标签调制数据需要多大的能量?
阅读器发射能量
在超高频902-928MHz频段下,FCC规定,发射功率不能超过1W
路径损失
P
T
x
=
P
R
x
A
e
4
π
r
2
P_{Tx}=P_{Rx}\frac{A_e}{4\pi r^2}
PTx=PRx4πr2Ae
r
r
r指发射机和接收机之间的距离。所收集的功率与撞击在标签上的功率密度成正比,在尺寸上必须为一个面积常数,通常称为标签天线的有效孔径
A
e
A_e
Ae。
通常情况下,我们认为天线的孔径大小为
A
e
=
λ
2
4
π
=
86
c
m
2
@
915
M
H
z
A_e=\frac{\lambda^2}{4\pi}=86cm^2@915MHz
Ae=4πλ2=86cm2@915MHz
标签启动能量
标签在读取时需要10-30
μ
w
\mu w
μw的能量,考虑到能量的转化率为30%,因此需要30-100
μ
w
\mu w
μw的能量。考虑路径损耗和最大功率1w,标签和阅读器之间的最大距离是3m左右。
其实,我们还需要考虑两个问题:
- 标签反射的信号强度有多大
- 为了能够正确解码,阅读器收到的标签反射信号最小是多大?
第一个问题,理论上,一个无源标签可以反射和它所能吸收的最大功率一样大的信号功率,但是实际上很难做到。在实际中,一个无源标签大约能够反射1/3的接收信号能量,也就是-5dB的衰减。
关于阅读器所需要的能量,这个问题是不一而同的,和我们的具体实现方法有关。
标签反射功率和距离的关系
随着距离的增加,阅读器天线的标签信号接收功率会随着距离的增大呈4次方衰减,公式表示为:
P
R
x
,
b
a
c
k
:
1
r
4
P_{Rx, back}:~\frac{1}{r^4}
PRx,back: r41
天线增益和极化对距离的影响
关键词:isotropic antenna(各向同性天线)
在理想情况下,我们能够假定天线对空间种每个方向的电磁波辐射能量是均衡的,也就是各向同性天线(辐射图为球形),这样的话,无论天线在阅读器的哪个方位,只要距离不变,接受到的信号强度都是一样的。但是这样的理想情况在现实种一般不存在,即使是全向天线,它也只是在某一个方向上(如垂直,水平)是近似各项同性的。因此,若天线在辐射区中央,那么辐射区边缘的能量就被浪费了。因此,如果天线能够发现标签的方向并且动态改变其辐射方向,能量就能够被放大。
天线的增益是指天线在某个方向上的辐射能量比天线在所有方向上的辐射功率值。
波束立体角和天线的增益呈反比关系。角度越大,天线增益越小。
例如,3dB的增益对应72度的波束立体角。
在真实世界中,模拟出一个各向同性的天线是困难的,在这个方向上人们进行了很多的努力。比如著名的偶极子天线,它在垂直于天线轴线方向上水平均匀辐射,呈现一个甜甜圈的形状。
该半波偶极子天线的长度约为发送频率波长的一半。在实际应用中,如果我们要测量天线的增益,通常使用偶极子天线作为参考天线,这样的增益通常被写作dBd,而使用dBi是参考各向同性的天线得出的值。这两个值之间相差2.15,也就是。
d
B
i
=
d
B
d
+
2.15
dBi=dBd+2.15
dBi=dBd+2.15
给定一个增益和发射功率,我们能够求出,使用多大发射功率的各向同性天线才能实现相同位置以及相同的发射功率,这种功率被称为有效各向同性辐射功率EIRP:
E
I
R
P
=
P
T
x
(
d
B
m
)
+
G
T
x
(
d
B
i
)
EIRP=P_{Tx}(dBm)+G_{Tx}(dBi)
EIRP=PTx(dBm)+GTx(dBi)
我们定义
A
e
=
G
λ
2
4
π
A_e=G\frac{\lambda^2}{4\pi}
Ae=G4πλ2
G指代dBi,天线在全向天线参考下的增益。利用这个关系,我们能够接收到发射天线发射出去并且被标签反射回来的信号:
P
R
x
=
P
T
x
G
T
x
A
e
,
R
x
4
π
r
2
=
P
T
x
G
T
x
G
R
x
λ
2
/
4
π
4
π
r
2
=
P
T
x
G
T
x
G
R
x
(
λ
4
π
r
)
2
P_{Rx}=P_{Tx}G_{Tx}\frac{A_e,Rx}{4\pi r^2}=P_{Tx}G_{Tx}G_{Rx}\frac{\lambda^2/4\pi}{4\pi r^2}=P_{Tx}G_{Tx}G_{Rx}(\frac{\lambda}{4\pi r})^2
PRx=PTxGTx4πr2Ae,Rx=PTxGTxGRx4πr2λ2/4π=PTxGTxGRx(4πrλ)2
该公式被称为弗里斯公式。利用弗里斯公式构造反射模型:
P
T
x
,
t
a
g
=
P
T
x
,
r
e
a
d
e
r
G
r
e
a
d
e
r
G
t
a
g
(
λ
4
π
r
)
2
T
b
P_{Tx, tag}=P_{Tx,reader}G_{reader}G_{tag}(\frac{\lambda}{4\pi r})^{2}T_{b}
PTx,tag=PTx,readerGreaderGtag(4πrλ)2Tb
P
R
x
,
t
a
g
=
P
T
x
,
t
a
g
G
t
a
g
G
r
e
a
d
e
r
(
λ
4
π
r
)
2
−
>
P_{Rx, tag}=P_{Tx,tag}G_{tag}G_{reader}(\frac{\lambda}{4\pi r})^{2}->
PRx,tag=PTx,tagGtagGreader(4πrλ)2−>
P
R
x
,
t
a
g
=
P
T
x
,
r
e
a
d
e
r
T
b
G
r
e
a
d
e
r
2
G
t
a
g
2
(
λ
4
π
r
)
4
−
>
P_{Rx, tag}=P_{Tx,reader}T_{b}G_{reader}^2G_{tag}^2(\frac{\lambda}{4\pi r})^{4}->
PRx,tag=PTx,readerTbGreader2Gtag2(4πrλ)4−>