poj 3468 树状数组解法

转自:http://kenby.iteye.com/blog/962159

一 算法    

    树状数组天生用来动态维护数组前缀和,其特点是每次更新一个元素的值,查询只能查数组的前缀和,

但这个题目求的是某一区间的数组和,而且要支持批量更新某一区间内元素的值,怎么办呢?实际上,

还是可以把问题转化为求数组的前缀和。

 

    首先,看更新操作update(s, t, d)把区间A[s]...A[t]都增加d,我们引入一个数组delta[i],表示

A[i]...A[n]的共同增量,n是数组的大小。那么update操作可以转化为:

1)令delta[s] = delta[s] + d,表示将A[s]...A[n]同时增加d,但这样A[t+1]...A[n]就多加了d,所以

2)再令delta[t+1] = delta[t+1] - d,表示将A[t+1]...A[n]同时减d

 

    然后来看查询操作query(s, t),求A[s]...A[t]的区间和,转化为求前缀和,设sum[i] = A[1]+...+A[i],则

                            A[s]+...+A[t] = sum[t] - sum[s-1],

那么前缀和sum[x]又如何求呢?它由两部分组成,一是数组的原始和,二是该区间内的累计增量和, 把数组A的原始

值保存在数组org中,并且delta[i]对sum[x]的贡献值为delta[i]*(x+1-i),那么

                            sum[x] = org[1]+...+org[x] + delta[1]*x + delta[2]*(x-1) + delta[3]*(x-2)+...+delta[x]*1

                                         = org[1]+...+org[x] + segma(delta[i]*(x+1-i))

                                         = segma(org[i]) + (x+1)*segma(delta[i]) - segma(delta[i]*i),1 <= i <= x

这其实就是三个数组org[i], delta[i]和delta[i]*i的前缀和,org[i]的前缀和保持不变,事先就可以求出来,delta[i]和

delta[i]*i的前缀和是不断变化的,可以用两个树状数组来维护。

 

    树状数组的解法比朴素线段树快很多,如果把long long变量改成__int64,然后用C提交的话,可以达到1047ms,

排在22名,但很奇怪,如果用long long变量,用gcc提交的话就要慢很多。

 

 

二 代码

 

C代码   收藏代码
  1. #include <stdio.h>  
  2.   
  3. #define DEBUG  
  4.   
  5. #ifdef DEBUG  
  6. #define debug(...) printf( __VA_ARGS__)   
  7. #else  
  8. #define debug(...)  
  9. #endif  
  10.   
  11. #define N 100002  
  12.   
  13. #define lowbit(i) ( i & (-i) )  
  14.   
  15. /* 设delta[i]表示[i,n]的公共增量 */  
  16. long long c1[N];    /* 维护delta[i]的前缀和 */  
  17. long long c2[N];    /* 维护delta[i]*i的前缀和 */  
  18. long long sum[N];  
  19. int       A[N];  
  20. int n;  
  21.   
  22. long long query(long long *array, int i)  
  23. {  
  24.     long long tmp;  
  25.   
  26.     tmp = 0;  
  27.     while (i > 0) {  
  28.         tmp += array[i];  
  29.         i -= lowbit(i);  
  30.     }  
  31.     return tmp;  
  32. }  
  33.   
  34. void update(long long *array, int i, long long d)   
  35. {  
  36.     while (i <= n) {  
  37.         array[i] += d;  
  38.         i += lowbit(i);  
  39.     }  
  40. }  
  41.   
  42. int main()   
  43. {  
  44.     int         q, i, s, t, d;  
  45.     long long   ans;  
  46.     char        action;  
  47.   
  48.     scanf("%d %d", &n, &q);  
  49.     for (i = 1; i <= n; i++) {  
  50.         scanf("%d", A+i);  
  51.     }  
  52.     for (i = 1; i <= n; i++) {  
  53.         sum[i] = sum[i-1] + A[i];  
  54.     }  
  55.   
  56.     while (q--) {  
  57.         getchar();  
  58.         scanf("%c %d %d", &action, &s, &t);  
  59.         if (action == 'Q') {  
  60.             ans = sum[t] - sum[s-1];  
  61.             ans += (t+1)*query(c1, t) - query(c2, t);  
  62.             ans -= (s*query(c1, s-1) - query(c2, s-1));  
  63.             printf("%lld\n", ans);  
  64.         }  
  65.         else {  
  66.             scanf("%d", &d);  
  67.             /* 把delta[i](s<=i<=t)加d,策略是 
  68.              *先把[s,n]内的增量加d,再把[t+1,n]的增量减d 
  69.              */  
  70.             update(c1, s, d);  
  71.             update(c1, t+1, -d);  
  72.             update(c2, s, d*s);  
  73.             update(c2, t+1, -d*(t+1));  
  74.         }  
  75.     }  
  76.     return 0;  
  77. }  
 

事实上,还可以不通过求s和t的前缀和,而是直接求出[s,t]的区间和,这是因为:

                                        sum[t] = segma(org[i]) + (x+1)*segma(delta[i]) - segma(delta[i]*i)  1 <= i <= t

                                        sum[s-1] = segma(org[i]) + s*segma(delta[i]) - segma(delta[i]*i)  1 <= i <= s-1

[s,t]的区间和可以表示为:

sum[t]-sum[s-1] = org[s] + ... + org[t] + (t+1)*(delta[s] + ... + delta[t]) + (t-s+1)*(delta[1] + ... + delta[s-1])

                                - (delta[s]*s + ... + delta[t]*t)

                            = segma(org[i]) +(t+1)* segma(delta[i]) - segma(delta[i]*i) , s <= i <= t

                             + (t-s+1)*segma(delta[i]), 1 <= i <= s-1

问题转化为求三个数组org, delta[i]和delta[i]*i的区间和,而线段树可以直接求出区间和,所以又得到了另外一种

解法:

 

C代码   收藏代码
  1. #include <stdio.h>  
  2.   
  3. //#define DEBUG  
  4.   
  5. #ifdef DEBUG  
  6. #define debug(...) printf( __VA_ARGS__)   
  7. #else  
  8. #define debug(...)  
  9. #endif  
  10.   
  11. #define N 100002  
  12.   
  13. /* 设delta[i]表示[i,n]的公共增量 */  
  14. long long tree1[262144];    /* 维护delta[i]的前缀和 */  
  15. long long tree2[262144];    /* 维护delta[i]*i的前缀和 */  
  16. long long sum[N];  
  17. int     A[N];  
  18. int     n, M;  
  19.   
  20. /* 查询[s,t]的区间和 */  
  21. long long query(long long *tree, int s, int t)  
  22. {  
  23.     long long tmp;  
  24.   
  25.     tmp = 0;  
  26.     for (s = s+M-1, t = t+M+1; (s^t) != 1; s >>= 1, t >>= 1) {  
  27.         if (~s&1) {  
  28.             tmp += tree[s^1];  
  29.         }  
  30.         if (t&1) {  
  31.             tmp += tree[t^1];  
  32.         }  
  33.     }  
  34.     return tmp;  
  35. }  
  36.   
  37. /* 修改元素i的值 */  
  38. void update(long long *tree, int i, long long d)   
  39. {  
  40.     for (i = (i+M); i > 0; i >>= 1) {  
  41.         tree[i] += d;  
  42.     }  
  43. }  
  44.   
  45. int main()   
  46. {  
  47.     int         q, i, s, t, d;  
  48.     long long   ans;  
  49.     char        action;  
  50.   
  51.     scanf("%d %d", &n, &q);  
  52.     for (i = 1; i <= n; i++) {  
  53.         scanf("%d", A+i);  
  54.     }  
  55.     for (i = 1; i <= n; i++) {  
  56.         sum[i] = sum[i-1] + A[i];  
  57.     }  
  58.   
  59.     for (M = 1; M < (n+2); M <<= 1);  
  60.   
  61.     while (q--) {  
  62.         getchar();  
  63.         scanf("%c %d %d", &action, &s, &t);  
  64.         if (action == 'Q') {  
  65.             ans = sum[t] - sum[s-1];  
  66.             ans += (t+1)*query(tree1, s, t)+(t-s+1)*query(tree1, 1, s-1);  
  67.             ans -= query(tree2, s, t);  
  68.             printf("%lld\n", ans);  
  69.         }  
  70.         else {  
  71.             scanf("%d", &d);  
  72.             /* 把delta[i](s<=i<=t)加d,策略是 
  73.              *先把[s,n]内的增量加d,再把[t+1,n]的增量减d 
  74.              */  
  75.             update(tree1, s, d);  
  76.             update(tree2, s, d*s);  
  77.             if (t < n) {  
  78.                 update(tree1, t+1, -d);  
  79.                 update(tree2, t+1, -d*(t+1));  
  80.             }  
  81.         }  
  82.     }  
  83.     return 0;  
  84. }  
 

    两种解法本质上是一样的,其实zkw式线段树 == 树状数组,它们都可以支持查询某个区间的和,以及修改某个点的值,

但不能直接修改某个区间的值,必须引入一个额外的数组,如这题的delta数组,把对区间的修改转化为对两个端点的修改。

分享到:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值