转自:http://kenby.iteye.com/blog/962159
一 算法
树状数组天生用来动态维护数组前缀和,其特点是每次更新一个元素的值,查询只能查数组的前缀和,
但这个题目求的是某一区间的数组和,而且要支持批量更新某一区间内元素的值,怎么办呢?实际上,
还是可以把问题转化为求数组的前缀和。
首先,看更新操作update(s, t, d)把区间A[s]...A[t]都增加d,我们引入一个数组delta[i],表示
A[i]...A[n]的共同增量,n是数组的大小。那么update操作可以转化为:
1)令delta[s] = delta[s] + d,表示将A[s]...A[n]同时增加d,但这样A[t+1]...A[n]就多加了d,所以
2)再令delta[t+1] = delta[t+1] - d,表示将A[t+1]...A[n]同时减d
然后来看查询操作query(s, t),求A[s]...A[t]的区间和,转化为求前缀和,设sum[i] = A[1]+...+A[i],则
A[s]+...+A[t] = sum[t] - sum[s-1],
那么前缀和sum[x]又如何求呢?它由两部分组成,一是数组的原始和,二是该区间内的累计增量和, 把数组A的原始
值保存在数组org中,并且delta[i]对sum[x]的贡献值为delta[i]*(x+1-i),那么
sum[x] = org[1]+...+org[x] + delta[1]*x + delta[2]*(x-1) + delta[3]*(x-2)+...+delta[x]*1
= org[1]+...+org[x] + segma(delta[i]*(x+1-i))
= segma(org[i]) + (x+1)*segma(delta[i]) - segma(delta[i]*i),1 <= i <= x
这其实就是三个数组org[i], delta[i]和delta[i]*i的前缀和,org[i]的前缀和保持不变,事先就可以求出来,delta[i]和
delta[i]*i的前缀和是不断变化的,可以用两个树状数组来维护。
树状数组的解法比朴素线段树快很多,如果把long long变量改成__int64,然后用C提交的话,可以达到1047ms,
排在22名,但很奇怪,如果用long long变量,用gcc提交的话就要慢很多。
二 代码
- #include <stdio.h>
- #define DEBUG
- #ifdef DEBUG
- #define debug(...) printf( __VA_ARGS__)
- #else
- #define debug(...)
- #endif
- #define N 100002
- #define lowbit(i) ( i & (-i) )
- /* 设delta[i]表示[i,n]的公共增量 */
- long long c1[N]; /* 维护delta[i]的前缀和 */
- long long c2[N]; /* 维护delta[i]*i的前缀和 */
- long long sum[N];
- int A[N];
- int n;
- long long query(long long *array, int i)
- {
- long long tmp;
- tmp = 0;
- while (i > 0) {
- tmp += array[i];
- i -= lowbit(i);
- }
- return tmp;
- }
- void update(long long *array, int i, long long d)
- {
- while (i <= n) {
- array[i] += d;
- i += lowbit(i);
- }
- }
- int main()
- {
- int q, i, s, t, d;
- long long ans;
- char action;
- scanf("%d %d", &n, &q);
- for (i = 1; i <= n; i++) {
- scanf("%d", A+i);
- }
- for (i = 1; i <= n; i++) {
- sum[i] = sum[i-1] + A[i];
- }
- while (q--) {
- getchar();
- scanf("%c %d %d", &action, &s, &t);
- if (action == 'Q') {
- ans = sum[t] - sum[s-1];
- ans += (t+1)*query(c1, t) - query(c2, t);
- ans -= (s*query(c1, s-1) - query(c2, s-1));
- printf("%lld\n", ans);
- }
- else {
- scanf("%d", &d);
- /* 把delta[i](s<=i<=t)加d,策略是
- *先把[s,n]内的增量加d,再把[t+1,n]的增量减d
- */
- update(c1, s, d);
- update(c1, t+1, -d);
- update(c2, s, d*s);
- update(c2, t+1, -d*(t+1));
- }
- }
- return 0;
- }
事实上,还可以不通过求s和t的前缀和,而是直接求出[s,t]的区间和,这是因为:
sum[t] = segma(org[i]) + (x+1)*segma(delta[i]) - segma(delta[i]*i) 1 <= i <= t
sum[s-1] = segma(org[i]) + s*segma(delta[i]) - segma(delta[i]*i) 1 <= i <= s-1
[s,t]的区间和可以表示为:
sum[t]-sum[s-1] = org[s] + ... + org[t] + (t+1)*(delta[s] + ... + delta[t]) + (t-s+1)*(delta[1] + ... + delta[s-1])
- (delta[s]*s + ... + delta[t]*t)
= segma(org[i]) +(t+1)* segma(delta[i]) - segma(delta[i]*i) , s <= i <= t
+ (t-s+1)*segma(delta[i]), 1 <= i <= s-1
问题转化为求三个数组org, delta[i]和delta[i]*i的区间和,而线段树可以直接求出区间和,所以又得到了另外一种
解法:
- #include <stdio.h>
- //#define DEBUG
- #ifdef DEBUG
- #define debug(...) printf( __VA_ARGS__)
- #else
- #define debug(...)
- #endif
- #define N 100002
- /* 设delta[i]表示[i,n]的公共增量 */
- long long tree1[262144]; /* 维护delta[i]的前缀和 */
- long long tree2[262144]; /* 维护delta[i]*i的前缀和 */
- long long sum[N];
- int A[N];
- int n, M;
- /* 查询[s,t]的区间和 */
- long long query(long long *tree, int s, int t)
- {
- long long tmp;
- tmp = 0;
- for (s = s+M-1, t = t+M+1; (s^t) != 1; s >>= 1, t >>= 1) {
- if (~s&1) {
- tmp += tree[s^1];
- }
- if (t&1) {
- tmp += tree[t^1];
- }
- }
- return tmp;
- }
- /* 修改元素i的值 */
- void update(long long *tree, int i, long long d)
- {
- for (i = (i+M); i > 0; i >>= 1) {
- tree[i] += d;
- }
- }
- int main()
- {
- int q, i, s, t, d;
- long long ans;
- char action;
- scanf("%d %d", &n, &q);
- for (i = 1; i <= n; i++) {
- scanf("%d", A+i);
- }
- for (i = 1; i <= n; i++) {
- sum[i] = sum[i-1] + A[i];
- }
- for (M = 1; M < (n+2); M <<= 1);
- while (q--) {
- getchar();
- scanf("%c %d %d", &action, &s, &t);
- if (action == 'Q') {
- ans = sum[t] - sum[s-1];
- ans += (t+1)*query(tree1, s, t)+(t-s+1)*query(tree1, 1, s-1);
- ans -= query(tree2, s, t);
- printf("%lld\n", ans);
- }
- else {
- scanf("%d", &d);
- /* 把delta[i](s<=i<=t)加d,策略是
- *先把[s,n]内的增量加d,再把[t+1,n]的增量减d
- */
- update(tree1, s, d);
- update(tree2, s, d*s);
- if (t < n) {
- update(tree1, t+1, -d);
- update(tree2, t+1, -d*(t+1));
- }
- }
- }
- return 0;
- }
两种解法本质上是一样的,其实zkw式线段树 == 树状数组,它们都可以支持查询某个区间的和,以及修改某个点的值,
但不能直接修改某个区间的值,必须引入一个额外的数组,如这题的delta数组,把对区间的修改转化为对两个端点的修改。