Leetcode 二叉树的中序遍历

在这里插入图片描述
方法有三个:

  1. Morris 中序遍历:时间复杂度 O ( N ) O(N) O(N),空间复杂度 O ( 1 ) O(1) O(1)
  2. 递归遍历:时间复杂度 O ( N ) O(N) O(N),空间复杂度 O ( N ) O(N) O(N)(递归栈)
  3. 迭代遍历:时间复杂度 O ( N ) O(N) O(N),空间复杂度 O ( N ) O(N) O(N)

Morris 中序遍历:

不适用额外的存储空间,通过改变节点的指向完成遍历。当前访问节点为root:

1.若当前节点不存在左子树

  • 将节点值输出
  • 当前节点向右移动

2.若当前节点存在左子树:

  • 找到左子树中序遍历的最后一个节点【前驱节点:左-右-右-…-右】
  • 若前驱节点右节点为空
    – 右节点指向当前root
    – root = root → \rightarrow left
  • 若前驱节点右节点不为空
    – 当前值输出
    – root = root → \rightarrow right
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> out;
        TreeNode* preds = root;
        while(root){
            if(!root->left) {
                out.push_back(root->val);
                root = root->right;
            } else {
                preds = root->left;
                while(preds->right && preds->right != root) preds = preds->right;
                if(!preds->right) {
                    preds->right = root;
                    root = root->left;
                }
                else {
                    out.push_back(root->val);
                    preds->right = nullptr;
                    root = root->right;
                }
            }
        }
        return out;
    }
};

递归遍历:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
    vector<int> out;
    void inorder(TreeNode* node) {
        if(!node) return;
        if(node->left) inorder(node->left);
        out.push_back(node->val);
        if(node->right) inorder(node->right);
    }
public:
    vector<int> inorderTraversal(TreeNode* root) {
        inorder(root);
        return out;
    }
};

迭代遍历(堆):

出栈的时,存储输出值。
root 指针不断更新,对于每一个子树:
左边向下,用一个 while 找到最深的叶子节点
右边返回,当前节点先出栈,再访问右节点

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> out;
        stack<TreeNode*> stk;
        while(root || stk.size() > 0){
            while(root){
                stk.push(root);
                root = root->left;
            }
            root = stk.top();
            stk.pop();
            out.push_back(root->val);
            root = root->right;
        }
        return out;  
    }
};

另一种迭代(较好理解)每一个节点存入栈中时记录其相应的访问状态
若已经访问过, 则加入输出
否则,按照出栈中序遍历的顺序压入栈中
附上代码:

typedef pair<int, TreeNode*> P;
class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> out;
        stack<P> stk;
        stk.push(P(0, root));
        while(stk.size() > 0) {
            P temp = stk.top();
            stk.pop();
            if(!temp.second) continue;
            if(!temp.first) {
                stk.push(P(0, temp.second->right));
                stk.push(P(1, temp.second));
                stk.push(P(0, temp.second->left));
            } else {
                out.push_back(temp.second->val);
            }
        }
        return out;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值