笔试面试之完全数

知道什么是完全数吗?完全数又称为完美数,因为它有如下特别的性质:例如6,它有约数1, 2, 3(不算它自身在内),这三个约数的和刚好也是它本身。现在就要你找出这些数

 

输入

多组测试数据,一组里只有一行,就是一个n(1<=n<=5e18)

 

输出

1到n的所有完全数,一个数占一行

 

样例输入:

30

 

样例输出:

6

28

 

view plaincopy to clipboardprint?

/*  

二千年前的欧几里得及18世纪的数学家欧拉证明了偶完全数只能是2^(k-1)*(2^k-1)这里 k=2或k是奇数。  

通过题目要求1<=n<=5e18;由2^(k-1)*(2^k-1)<=5e18,可得出: k<=31;  

这里设计到一个猜想:完全数的个位数或十位数是否是6或28;  

具体证明方法请参考:[url]http://www.pep.com.cn:82/200503/ca679589.htm[/url]  

因为:2^11-1=2047; 2^23-1=8388607;2^29-1=536870911;不满足上叙猜想条件。故舍去。  

由此得到关于k取值的数组: a[8]={2,3,5,7,13,17,19,31};  

*/  

#include <iostream>   

#include <cmath>   

int main()   

{   

    int a[8]={2, 3, 5, 7, 13, 17, 19, 31};   

    __int64 n;   

    while(scanf("%I64d", &n) != EOF)   

    {   

        __int64 l, pn;   

        for(int i = 0; i < 8; i++)   

        {   

            l=(__int64)pow(2, a[i]) - 1;   

            pn=(l + 1) / 2 * l;   

            if(pn > n)   

                break;   

            else  

                printf("%I64d/n", pn);   

        }   

    }   

    return 0;   

}  

 

 

 

本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/nash635/archive/2010/04/16/5491303.aspx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值