人脸识别基础(检测是否有人)

人脸识别基础(检测是否有人)

准备:

  1. 导入第三方库opencv

笔记

  1. cv2.namedWindow(window_name) 设置窗体名字
  2. cap = cv2.VideoCapture(camera_idx) 设置视频来源,若参数为一个路径使用本地文件, 若参数为0则使用本地摄像头
  3. 告诉opencv使用人脸识别的分类器
  4. 设置识别人脸后边框的颜色
  5. 循环读取视频帧,遍历每一帧进行识别,
  6. 转换为灰度图像进行识别,若返回长度大于0 则表示检测到人脸

代码

# -*- coding: utf-8 -*-
import os
import cv2
import sys
import importlib
importlib.reload(sys)


def CatchUsbVideo(window_name, camera_idx):

    cv2.namedWindow(window_name)
    # 视频来源,可以来自一段已存好的视频,也可以直接来自USB摄像头
    cap = cv2.VideoCapture(camera_idx)
    # 告诉OpenCV使用人脸识别分类器
    classfier = cv2.CascadeClassifier(os.getcwd()+"\\haarcascade\\haarcascade_frontalface_alt2.xml")
    # 识别出人脸后要画的边框的颜色,RGB格式
    color = (0, 255, 0)
    count = 0

    while cap.isOpened():
        ok, frame = cap.read()  # 读取一帧数据
        if not ok:
            break
        # 将当前帧转换成灰度图像
        grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        # 人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数
        faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
        if len(faceRects) > 0:  # 大于0则检测到人脸
           count=count+1

    return count


if __name__ == '__main__':
    # result = CatchUsbVideo("识别人脸区域", os.getcwd()+'\\video\\laopo.mp4')
    result=CatchUsbVideo("人脸识别区域",0)
    if result > 0:
        print('视频中有人!!')
    else:
        print('视频中无人!!')



计算机视觉通常是指计算机通过控制和应用传感器等设备对周围的环境进行获取的过程,然后对获取的视觉信息进行后期加工,包括表示、压缩、分析、处理、储存等,进而实现人类视觉所具有的“看”的功能。近年来计算机技术、光电技术和自动化技术的飞速发展,促成了计算机视觉系统的出现,同时随着人类生产生活需求的不断提高,视觉化、智能化的解决方案也越来越广泛的应用于工业生产、医疗和军事等领域,计算机视觉技术已经成为各国研究者关注和研究的热点。对计算机视觉系统的研究无论是在理论研究还是实际应用方面都有巨大的价值和意义。 基于图像的人体检测跟踪和人脸识别是当今计算机视觉和模式识别领域的热点研究问题,它在图像处理、智能监控、智能汽车等领域有着广泛的应用前景。本文针对人体检测跟踪和人脸识别中的一些关键问题进行研究,并取得了一定的进展,具体有如下四个方面:在人体检测方面,图像中复杂背景的变化对人体检测产生了负面的影响,比如产生空洞或者噪声,针对此类问题本文提出了基于二次连通域处理的人体检测方法,算法采用三帧差法提取运动目标,在得到二值图像后,运用数学形态学方法对二值图像进行膨胀腐蚀处理,接着利用四方向连接法和连通域三次扫描标记法去除空洞并连接断开的区域,最后利用HOG特征训练分类器来识别运动目标是否是人体。与传统方法不同的是,本文采用的四方向连接和连通域三次扫描标记法对于运动目标存在的空洞弥补效果更好,可以更加准确的连接断开区域,该方法对运动物体所在的环境没有约束,计算量较小,准确性高。实验结果表明,该方法是一种对于背景有一定鲁棒性的人体检测方法。 在人体跟踪方面,经典的Meanshift算法被广泛的用于计算机视觉和模式识别领域,但是当背景扰动的时候会使跟踪的准确性降低,针对此类问题本文提出了基于改进Meanshift的人体跟踪方法,算法通过判别跟踪区域是背景区域或前景区域来设置权重系数,进而实现定位更加准确的运动人体跟踪。与现有的方法相比,该方法减少了背景区域的计算量,同时将跟踪区域精确到运动人体,结合卡尔曼滤波器来预测运动人体下一步的方向,使得跟踪效果更好。实验结果表明,改进的方法相比传统Meanshift算法在准确度上要更加出色. 在光照预处理方面,由于光照对于人脸识别有重要的影响,比如高光、低光、单侧光等都会导致人脸识别率降低、误识率升高等一系列问题,所以本文提出了一种改进的高斯差分滤波光照预处理方法,通过改变高斯差分滤波器的水平方向和垂直方向的参
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值