HDU 4305 Lightning

题意:

几何处理后+求生成树个数+高斯消元+求逆元


知识点分析:

1.这题最主要的就是矩阵树了吧。。。学习新的图论知识好开心啊~~~

Matrix-Tree定理(Kirchhoff矩阵-树定理)。

论文参见:周冬《生成树的计数及其应用》

Matrix-Tree定理是解决生成树计数问题最有力的武器之一。

1、G的度数矩阵D[G]是一个n*n的矩阵,并且满足:当i≠j时,dij=0;当i=j时,dij等于vi的度数。

2、G的邻接矩阵A[G]也是一个n*n的矩阵, 并且满足:如果vi、vj之间有边直接相连,则aij=1,否则为0。

我们定义G的Kirchhoff矩阵(也称为拉普拉斯算子)C[G]为C[G]=D[G]-A[G],则Matrix-Tree定理可以描述为:G的所有不同的生成树的个数等于其Kirchhoff矩阵C[G]任何一个n-1阶主子式的行列式的绝对值。所谓n-1阶主子式,就是对于r(1≤r≤n),将C[G]的第r行、第r列同时去掉后得到的新矩阵,用Cr[G]表示。


2.逆元:知识点参考

一、模运算

模运算的性质总结如下:

(1)     (a + b) % n = (a % n + b % n) % n

(2)     (a - b) % n = (a % n - b % n) % n 

(3)     (a * b) % n = (a % n * b % n) % n 
(4)      a% n = ((a % n)b) % n 

二、逆元

定义 如果ab≡1(mod m), 则称ba的模m逆,记作a的模m逆是方程ax≡1(mod m)的解. 两个数互质一定有逆元。

求逆元可以使用辗转相除法,但是只有两个数都是质数的时候才有逆元,举例如下:

例:求5的模7逆

做辗转相除法, 求得整数b,k使得 5b+7k=1, 则b是5的模7逆.

计算如下:

     7=5+2,  5=2×2+1.

回代    1=5-2×2=5-2×(7-5)= 3×5-2×7,

得 5 -1≡3(mod7).

三、此处使用的模版(大神模板)

long long inv(long long a,long long m)
{
    if(a == 1)return 1;
    return inv(m%a,m)*(m-m/a)%m;
}


反思:(坑到自己的地方)

一、几何处理:

应该要判断的是是否在线段上,这里学到了个姿势。(叉积为0+不是端点+判断x,y范围+可以有等号)

求距离不要开方,精度保证


二、建图:

用O(n^3)处理,可以有常数优化。

但是我优化挫了。。。多建边了。。。

就是在判断是否有中间阻挡点的时候之需要删除边而不需要加边,这样会把已经删掉的边再加回去。


三、高斯消元:

这题还是在套模版。。。Orz。。。但要注意传进去的参数n应该是(n-1)


AC代码

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
#define maxn 305
#define pi acos(-1)
#define eps 1e-6
using namespace std;

int T,n,r;
struct Point
{
    int x,y;
}P[maxn];

int map[maxn][maxn],ma[maxn][maxn];


int cross(Point a,Point b,Point s)
{
    int x1=a.x-s.x,y1=a.y-s.y;
    int x2=b.x-s.x,y2=b.y-s.y;
    return x1*y2-x2*y1;
}
int dis(Point a,Point b)
{
    //cout<<"a.x = "<<a.x<<"  b.x = "<<b.x<<" a.y = "<<a.y<<"  b.y = "<<b.y<<endl;
    return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
bool judge(int a,int b,int i)
{
    if(P[i].x<=max(P[a].x,P[b].x) && P[i].y<=max(P[a].y,P[b].y) && P[i].x>=min(P[a].x,P[b].x) && P[i].y>=min(P[a].y,P[b].y))
    return true;
    else return false;
}

void check(int a,int b)
{
    int i;
    for(i=0;i<n;i++)
    {
        if(cross(P[a],P[i],P[b])==0 && a!=i &&b!=i)
        {
            if(judge(a,b,i))
            {
                map[a][b]=map[b][a]=0;
                //map[a][i]=map[i][a]=1;
            }
        }
    }
}
const int MOD = 10007;
int INV[MOD];
//求ax = 1( mod m) 的x值,就是逆元(0<a<m)
long long inv(long long a,long long m)
{
    if(a == 1)return 1;
    return inv(m%a,m)*(m-m/a)%m;
}

void init()
{
    int i,j;
    memset(map,0,sizeof(map));
    memset(ma,0,sizeof(ma));
    for(i=0;i<n;i++)
        for(j=i+1;j<n;j++)
        {
            if(j==i) continue;
            else
            {
                if(dis(P[i],P[j])<=r*r )
                {
                    map[i][j]=map[j][i]=1;
                    check(i,j);
                }
            }
        }
    for(i=0;i<n;i++)
        for(j=0;j<n;j++)
        {
            if(i!=j && map[i][j])
            ma[i][i]++,ma[i][j]=-1;

        }
}

int guss(int n)
{
    int i,j,k;
    for(i=0;i<n;i++)
        for(j=0;j<n;j++)
        ma[i][j] = ( ma[i][j]%MOD+MOD ) % MOD;
    int res=1;

    for(i=0;i<n;i++)
    {
        for(j=i;j<n;j++)
            if(ma[j][i]!=0)
            {
                for(k=i;k<n;k++)
                    swap(ma[i][k],ma[j][k]);
                if(i!=j)
                    res=(-res+MOD)%MOD;
                break;
            }
        if(ma[i][i]==0)
        {
            res=-1;
            break;
        }
        for(j=i+1;j<n;j++)
        {
            int tmp= (ma[j][i]*inv(ma[i][i],MOD))%MOD;
            for(k=i;k<n;k++)
                ma[j][k] = (ma[j][k]-(ma[i][k]*tmp)%MOD+MOD)%MOD;
        }
            res = (res * ma[i][i]) %MOD;
        }

    return res;
}

int main()
{
    freopen("in","r",stdin);
    //freopen("out","w",stdout);
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d %d",&n,&r);
        int i,j;
        for(i=0;i<n;i++)
        {
            scanf("%d %d",&P[i].x,&P[i].y);
        }
        init();
//        for(i=0;i<n;i++)
//        {
//            for(j=0;j<n;j++)
//            printf("%d ",map[i][j]);
//            putchar('\n');
//        }

        int ans=guss(n-1);
        printf("%d\n",ans);
    }
    return 0;
}






  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值