10.2 test solution.

9 篇文章 0 订阅
2 篇文章 0 订阅

1.a(a.cpp/c/pas)

时空限制

时间限制

1s

空间限制

256MB

【问题描述】

你是能看到第一题的 friends呢。—— hja

世界上没有什么比卖的这么贵的弹丸三还令人绝望的事了,所以便有了这么一道题。定义 f(x) 为满足 (a×b)x 的有序正整数对 (a,b) 的个数。
现在给定 N ,求i=1Nf(i)

【输入格式】

一行个整数 N

【输出格式】

一行个整数代表答案 。

【样例输入】

6

【样例输出】

25

【数据范围与规定】

对于 30%的数据, 1N100
对于 60% 的数据, 1N1000
对于 100% 的数据, 1N1011


solution

  • 60分思路

    • 胡乱找一下规律,发现 ans=i=1N(n/i)d(i)
    • 其中 d(i) 表示 i 的约数个数

    • 然后n/i可以除法分块, d(i) 的前缀和也可以除法分块,然后乱搞一下就好了。

    • 怎么推出来并不重要反正只有60分
  • 100分思路

    • 如果一个正整数对 (a,b) 满足 (a×b)x ,那就有 x=a×b×c
    • 那问题就转换成了找三个正整数 a,b,c ,满足 a×b×c=x 的方案数
    • 因为题目求的是 i=1Nf(i) ,所以 a×b×cN 就行,因为只要 a×b×cN ,这三个正整数就对答案有贡献
    • 所以枚举 a,b,c ,满足条件, ans++ ,但这样是 O(n3) ,稳 TLE
    • 考虑一种满足条件的 a,b,c ,这三个整数有 6 种排列,而且这 6 种排列都满足条件
    • 所以可以强行让 abc ,这样枚举并且统计答案,最后再 6 就好了
    • 但是还有一种情况是 a,b,c 三个数有可能有相同的数,所以再把这些情况枚举一下

    • 两个数相同,一共有 3 种排列,三个数相同,只有1种排列

    • 最后把这些情况都加起来就是最后的答案,时间复杂度据zhx说 O(n56)

code

  • test 60分代码
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;

template<typename T>
void input(T &x) {
    x=0; T a=1;
    register char c=getchar();
    for(;c<'0'||c>'9';c=getchar())
        if(c=='-') a=-1;
    for(;c>='0'&&c<='9';c=getchar())
        x=x*10+c-'0';
    x*=a;
    return;
}

ll n;

ll Getd(ll n) {
    ll ret=0;
    for(ll l=1,r;l<=n;l=r+1) {
        r=n/(n/l);
        ret+=(n/l)*(r-l+1);
    }
    return ret;
}

ll sum(ll n) {
    ll ret=0;
    for(ll l=1,r;l<=n;l=r+1) {
        r=n/(n/l);
        ret+=(n/l)*(Getd(r)-Getd(l-1));
    }
    return ret;
}

int main() {
    freopen("a.in","r",stdin);
    freopen("a.out","w",stdout);
    input(n);
    printf("%lld\n",sum(n));
    fclose(stdin);
    fclose(stdout);
    return 0;
}
  • 100分code 其实也没那么难
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;

int main() {
    freopen("a.in","r",stdin);
    freopen("a.out","w",stdout);
    ll n;
    scanf("%lld",&n);
    ll ans=0,tans=0;
    /*
    for循环里面的ans++就是统计的三个数都相同的情况
    */
    for(ll a=1,v;a*a<=(v=n/a);a++,ans++)
        for(ll b=a+1;b*b<=v;b++)
            tans+=n/(a*b)-b;
    /*
    tans+=的那个东西,是c的所有取值的情况
    a*b*c<=n
    c<=n/(a*b)
    因为我们规定了a<=b<=c
    所以b<=c<=n/(a*b)
    所以c的取值一共有n/(a*b)-b种
    */
    ans+=tans*6;
    tans=0;
    /*
    下面是两个数相同的情况
    和上面类似
    */
    for(ll a=1,v;(v=a*a)<=n;a++) {
        tans+=n/v;
        if(a*a<=n/a) tans--;
    }
    ans+=tans*3;
    printf("%lld\n",ans);
    return 0;
}

2.b(b.cpp/c/pas)

时空限制

时间限制

1s

空间限制

256MB

【问题描述】

你是能看到第二题的 friends呢。—— laekov

Hja和 Yjq为了抢男主角打了起来,现在他们正在一棵树上决斗 。Hja在 A点,Yjq在 B点,Hja先发制人开始移动 。每次他们可以沿着一条边移动 ,但 一旦一条边被对方走过了自己就不能再走这条边了。每条边上都有权值 ,他们都希望自己的权值尽量多 。现在给你这棵树以及他们俩开始的位置 ,问Hja能够获得的最大权值 。

【输入格式】

第一行两个整数 N,M ,代表树的点数和询问的个数 。
接下来 N1 行每行三个整数 a,b,c ,代表从 a b有一条权值为 c 的边 。
接下来M行,每行两个整数 A,B 代表一次询问 。

【输出格式】

对于每次询问 ,输出一个整数代表答案 。

【样例输入1】

2 1
1 2 3
1 2

【样例输出1】

3

【样例输入2】

3 2
1 2 3
1 3 1
2 3
1 3

【样例输出2】

3
4

【数据范围与规定】

对于 30% 的数据 , 1N,M1000
对于另外 30% 的数据 , M=1
对于 100% 的数据, 1N,M105,0c103,1a,b,A,BN

solution

code

  • std by zhx
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>

using namespace std;

const int maxn=100010;

int n,m,en,z[maxn*3],f[maxn][20],q[maxn],depth[maxn],sum[maxn*3][2],fd[maxn],start[maxn],end[maxn],value[maxn];

struct edge
{
    int e,d;
    edge *next;
}*v[maxn],ed[maxn<<1];

void add_edge(int s,int e,int d)
{
    en++;
    ed[en].next=v[s];v[s]=ed+en;v[s]->e=e;v[s]->d=d;
}

int get(int p,int d)
{
    if (d==-1) return p;
    int x=0;
    while (d)
    {
        if (d&1) p=f[p][x];
        d>>=1;
        x++;
    }
    return p;
}

int get_lca(int p1,int p2)
{
    if (depth[p1]<depth[p2]) swap(p1,p2);
    p1=get(p1,depth[p1]-depth[p2]);
    int x=0;
    while (p1!=p2)
    {
        if (!x || f[p1][x]!=f[p2][x])
        {
            p1=f[p1][x];
            p2=f[p2][x];
            x++;
        }
        else x--;
    }
    return p1;
}

int calc(int p1,int p2)
{
    if (p1==f[p2][0]) return value[1]-value[p2];
    else return value[p1]+fd[p1];
}

int calcp(int p,int v)
{
    int l=start[p]-1,r=end[p];
    while (l+1!=r)
    {
        int m=(l+r)>>1;
        if (v>z[m]) l=m;
        else r=m;
    }
    return r;
}

int main()
{
    freopen("b.in","r",stdin);
    freopen("b.out","w",stdout);

    scanf("%d%d",&n,&m);
    int tot=0;
    for (int a=1;a<n;a++)
    {
        int s,e,d;
        scanf("%d%d%d",&s,&e,&d);
        tot+=d;
        add_edge(s,e,d);
        add_edge(e,s,d);
    }
    depth[1]=1;
    int front=1,tail=1;
    q[1]=1;
    for (;front<=tail;)
    {
        int now=q[front++];
        for (edge *e=v[now];e;e=e->next)
            if (!depth[e->e])
            {
                depth[e->e]=depth[now]+1;
                fd[e->e]=e->d;
                f[e->e][0]=now;
                int p=now,x=0;
                while (f[p][x])
                {
                    f[e->e][x+1]=f[p][x];
                    p=f[p][x];
                    x++;
                }
                q[++tail]=e->e;
            }
    }
    int cnt=0;
    for (int a=n;a>=1;a--)
    {
        int now=q[a];
        start[now]=cnt+1;
        for (edge *e=v[now];e;e=e->next)
            if (depth[e->e]==depth[now]+1)
            {
                z[++cnt]=value[e->e]+e->d;
                value[now]+=value[e->e]+e->d;
            }
        z[++cnt]=tot-value[now];
        end[now]=cnt;
        sort(z+start[now],z+end[now]+1);
        sum[end[now]][0]=z[end[now]];
        sum[end[now]][1]=0;
        for (int a=end[now]-1;a>=start[now];a--)
        {
            sum[a][0]=sum[a+1][0];
            sum[a][1]=sum[a+1][1];
            if ((a&1)==(end[now]&1)) sum[a][0]+=z[a];
            else sum[a][1]+=z[a];
        }
        cnt++;
    }
    for (int a=1;a<=m;a++)
    {
        int p1,p2;
        scanf("%d%d",&p1,&p2);
        int lca=get_lca(p1,p2);
        int dist=depth[p1]+depth[p2]-2*depth[lca];
        int delta=dist/2+(dist&1);
        int px,px1,px2;
        if (depth[p1]-depth[lca]<delta) px=get(p2,dist-delta);
        else px=get(p1,delta);
        if (depth[p1]-depth[lca]<delta-1) px1=get(p2,dist-delta+1);
        else px1=get(p1,delta-1);
        if (depth[p2]-depth[lca]<dist-delta-1) px2=get(p1,delta+1);
        else px2=get(p2,dist-delta-1);
        int ans=0;
        if (p1==px)
        {
            if (p2==px) ans=sum[start[px]][0];
            else
            {
                int v2=calc(px2,px);
                int p=calcp(px,v2);
                ans=sum[p+1][0]+sum[start[px]][1]-sum[p][1];
            }
        }
        else
        {
            if (p2==px)
            {
                int v1=calc(px1,px);
                int p=calcp(px,v1);
                ans=v1+sum[p+1][1]+sum[start[px]][0]-sum[p][0];
            }
            else
            {
                int v1=calc(px1,px);
                int pp1=calcp(px,v1);
                int v2=calc(px2,px);
                int pp2=calcp(px,v2);
                if (pp2==pp1) pp2++;
                if (pp1>pp2) swap(pp1,pp2);
                ans=v1+sum[pp2+1][dist&1]+sum[pp1+1][1-(dist&1)]-sum[pp2][1-(dist&1)]+sum[start[px]][dist&1]-sum[pp1][dist&1];
            }
        }
        printf("%d\n",ans);
    }

    return 0;
}

3.c(c.cpp/c/pas)

时空限制

时间限制

1s

空间限制

256MB

【问题描述】

你是能看到第三题的 friends呢。—— aoao

Yjq买了36个卡包,并且把他们排列成6×6的阵型准备开包 。左上角是(0,0),右下角为 (5,5)。为了能够开到更多的金色普通卡,Yjq会为每个包添加 1-5个玄学值,每个玄学值可以是 1-30中的一个整数。但是不同的玄学值会造成不同的欧气加成,具体如下:

  1. 同一个卡包如果有两个相同的玄学值则会有无限大的欧气加成。
  2. 同一个卡包如果有两个相邻的玄学值会有 A 点欧气加成。
  3. 相邻的两个卡包如果有相同的玄学值会有B点欧气加成。
  4. 相邻的两个卡包如果有相邻的玄学值会有 C 点欧气加成。
  5. 距离为2的卡包如果有相同玄学值会有D点欧气加成。
  6. 距离为2的卡包如果有相邻玄学值会有 E 点欧气加成。

以上的所有的加成是每存在一个符合条件就会加一次,,如卡包1,2,3的玄学值就会加两次。

但是,玄学值个不可控的东西,即使Yjq也只能自己决定(2,2),(2,3),(3,2),(3,3)这几包卡的玄学值。为了能够抽到更多的金色普通卡,, Yjq想知道自己能够获得的最多的欧气加成是多少。 注意你只能修改玄学值 ,不能修改玄学值的个数 。

【输入格式】

输入的第一行有 5个整数 A,B,C,D,E
接下去有 6×6 的代表初始玄学值。
每个玄学值为 [n:a1,a2,,an] 的描述形式。

【输出格式】

一行个整数代表答案。

【样例输入】

5 4 3 2 1
[1:1][2][3][4][5][6]
[1:1][2][3][4][5][6]
[1:1][2][5:1,2,3,4,5][5][6]
[1:1][ 1:2][5:1,2,3,4,5][5][6]
[1:1][2][3][4][5][6]
[1:1][2][3][4][5][6]

【样例输出】

250

【数据规模与约定】

对于 100% 的数据, 1A,B,C,D,E100,1n5,1ai30 。有部分分。


solution

就是一个简单的九维dp而已

code

  • std by zhx
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>

using namespace std;

#define now pre[a][b][c][d][e][s1][s2][s3][s4]
#define dis(a,b,c,d) (abs(a-c)+abs(b-d))

const int INF=0x3f3f3f3f;

int A,B,C,D,E,num[10][10],value[10][10][10],delta[10][10][40],dp[31][6][6][6][6][2][2][2][2];

char s[500];

bool map[6][6][6][6];

int main()
{
    freopen("c.in","r",stdin);
    freopen("c.out","w",stdout);

    scanf("%d%d%d%d%d",&A,&B,&C,&D,&E);
    for (int a=0;a<6;a++)
    {
        scanf("%s",s);
        int p=0;
        for (int b=0;b<6;b++)
        {
            int px=p;
            while (s[px]!=']')
                px++;
            p++;
            num[a][b]=s[p]-'0';
            p++;
            p++;
            for (int c=1;c<=num[a][b];c++)
            {
                int v=0;
                while (s[p]>='0' && s[p]<='9')
                {
                    v=v*10+s[p]-'0';
                    p++;
                }
                value[a][b][c]=v;
                p++;
            }
            p=px+1;
        }
    }
    int base=0;
    for (int a=0;a<6;a++)
        for (int b=0;b<6;b++)
            if (a>=2 && a<=3 && b>=2 && b<=3) ;
            else
            {
                sort(value[a][b]+1,value[a][b]+num[a][b]+1);
                for (int c=2;c<=num[a][b];c++)
                    if (value[a][b][c]-value[a][b][c-1]==1) base+=A;
                for (int c=2;c<=3;c++)
                    for (int d=2;d<=3;d++)
                    {
                        if (dis(a,b,c,d)==1)
                        {
                            for (int e=1;e<=num[a][b];e++)
                            {
                                delta[c][d][value[a][b][e]]+=B;
                                delta[c][d][value[a][b][e]-1]+=C;
                                delta[c][d][value[a][b][e]+1]+=C;
                            }
                        }
                        if (dis(a,b,c,d)==2)
                        {
                            for (int e=1;e<=num[a][b];e++)
                            {
                                delta[c][d][value[a][b][e]]+=D;
                                delta[c][d][value[a][b][e]-1]+=E;
                                delta[c][d][value[a][b][e]+1]+=E;
                            }
                        }
                    }
                for (int c=0;c<6;c++)
                    for (int d=0;d<6;d++)
                        if (dis(a,b,c,d)<=2 && (c!=a || d!=b) && !map[a][b][c][d])
                        {
                            map[a][b][c][d]=map[c][d][a][b]=true;
                            if (c>=2 && c<=3 && d>=2 && d<=3) ;
                            else
                            {
                                int dist=dis(a,b,c,d);
                                for (int e=1;e<=num[a][b];e++)
                                    for (int f=1;f<=num[c][d];f++)
                                    {
                                        if (abs(value[a][b][e]-value[c][d][f])==0)
                                        {
                                            if (dist==1) base+=B;
                                            else base+=D;
                                        }
                                        if (abs(value[a][b][e]-value[c][d][f])==1)
                                        {
                                            if (dist==1) base+=C;
                                            else base+=E;
                                        }
                                    }
                            }
                        }
            }
    memset(dp,0x3f,sizeof(dp));
    dp[0][0][0][0][0][0][0][0][0]=base;
    for (int a=0;a<30;a++)
        for (int b=0;b<=num[2][2];b++)
            for (int c=0;c<=num[2][3];c++)
                for (int d=0;d<=num[3][2];d++)
                    for (int e=0;e<=num[3][3];e++)
                        for (int s1=0;s1<=1;s1++)
                            for (int s2=0;s2<=1;s2++)
                                for (int s3=0;s3<=1;s3++)
                                    for (int s4=0;s4<=1;s4++)
                                        if (dp[a][b][c][d][e][s1][s2][s3][s4]!=INF)
                                        {
                                            int v=dp[a][b][c][d][e][s1][s2][s3][s4];
                                            for (int sx1=0;sx1<=(b!=num[2][2]);sx1++)
                                                for (int sx2=0;sx2<=(c!=num[2][3]);sx2++)
                                                    for (int sx3=0;sx3<=(d!=num[3][2]);sx3++)
                                                        for (int sx4=0;sx4<=(e!=num[3][3]);sx4++)
                                                        {
                                                            int wmt=0;
                                                            if (sx1) 
                                                            {
                                                                wmt+=delta[2][2][a+1];
                                                                if (s1) wmt+=A;
                                                                if (s2) wmt+=C;
                                                                if (s3) wmt+=C;
                                                                if (s4) wmt+=E;
                                                            }
                                                            if (sx2) 
                                                            {
                                                                wmt+=delta[2][3][a+1];
                                                                if (s1) wmt+=C;
                                                                if (s2) wmt+=A;
                                                                if (s3) wmt+=E;
                                                                if (s4) wmt+=C;
                                                            }
                                                            if (sx3) 
                                                            {
                                                                wmt+=delta[3][2][a+1];
                                                                if (s1) wmt+=C;
                                                                if (s2) wmt+=E;
                                                                if (s3) wmt+=A;
                                                                if (s4) wmt+=C;
                                                            }
                                                            if (sx4) 
                                                            {
                                                                wmt+=delta[3][3][a+1];
                                                                if (s1) wmt+=E;
                                                                if (s2) wmt+=C;
                                                                if (s3) wmt+=C;
                                                                if (s4) wmt+=A;
                                                            }
                                                            if (sx1 && sx2) wmt+=B;
                                                            if (sx1 && sx3) wmt+=B;
                                                            if (sx1 && sx4) wmt+=D;
                                                            if (sx2 && sx3) wmt+=D;
                                                            if (sx2 && sx4) wmt+=B;
                                                            if (sx3 && sx4) wmt+=B;
                                                            int &t=dp[a+1][b+sx1][c+sx2][d+sx3][e+sx4][sx1][sx2][sx3][sx4];
                                                            if (t>v+wmt) t=v+wmt;
                                                        }
                                        }
    int ans=INF;
    for (int a=0;a<=1;a++)
        for (int b=0;b<=1;b++)
            for (int c=0;c<=1;c++)
                for (int d=0;d<=1;d++)
                    ans=min(ans,dp[30][num[2][2]][num[2][3]][num[3][2]][num[3][3]][a][b][c][d]);
    printf("%d\n",ans);

    return 0;
}

除了T1都很可做的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值