传送门:力扣
序
第一次写的代码,提交后超时了.想法是用一个state数组记录每个服务器最后一个请求结束的时间.依次遍历每个请求,找到请求运行的服务器并修改服务器最后一个请求结束时间.每当一个请求到来时,最坏情况会遍历所有的服务器.时间复杂度为O(k*req_len),req_len为请求个数.
class Solution {
public List<Integer> busiestServers(int k, int[] arrival, int[] load) {
// 记录k个服务器的状态,0为空闲,大于1为繁忙,记录上一次结束时间
int[] state = new int[k];
//记录k个服务器的访问数量
int[] count = new int[k];
int max = 0;
int req_count = arrival.length;
//分别处理每个请求
for(int i = 0;i<req_count;i++){
int arrival_time = arrival[i];
int load_time = load[i];
int serve = getServe(i,state,k,arrival_time);
if(serve!=-1){
state[serve]=load_time+arrival_time;
count[serve]++;
max = Math.max(max,count[serve]);
}
}
List<Integer> list = new ArrayList<>();
for(int i = 0;i<k;i++){
if(count[i]==max){
list.add(i);
}
}
return list;
}
public static int getServe(int i,int[] state,int k,int cur_time){
if(state[i%k]<=cur_time){
return i%k;
}
for(int j = (i+1)%k;j!=i%k;j=(j+1)%k){
if(state[j]<=cur_time){
return j;
}
}
return -1;
}
}
看了官方题解后,对查询请求运行于哪个服务器做出了优化.使用的是有序集合和优先队列.
TreeSet
底层TreeMap,Entry为树的节点,元素有序存入数中.
测试几个方法:
public class Main {
public static void main(String[] args) {
TreeSet<Integer> treeSet = new TreeSet<Integer>((a,b)->a-b);
treeSet.add(2);
treeSet.add(1);
treeSet.add(5);
treeSet.add(3);
System.out.println("treeSet.first(): "+treeSet.first());
System.out.println("treeSet.last(): "+treeSet.last());
System.out.println("treeSet.ceiling(3): "+treeSet.ceiling(3));
System.out.println("treeSet.floor(3): "+treeSet.floor(3));
System.out.println("treeSet.lower(3): "+treeSet.lower(3));
System.out.println("treeSet.higher(3): "+treeSet.higher(3));
}
}
输出结果:
treeSet.first(): 1
treeSet.last(): 5
treeSet.ceiling(3): 3
treeSet.floor(3): 3
treeSet.lower(3): 2
treeSet.higher(3): 5
ceiling(),floor()取等,lower(),higher()不取等.
PriorityQueue
堆结构
官方的代码
方法一
class Solution {
public List<Integer> busiestServers(int k, int[] arrival, int[] load) {
TreeSet<Integer> available = new TreeSet<Integer>();
//将服务器全部添加到available中,用TreeSet存储可用服务器,当要查找下一个服务器是可调用ceiling()方法查找,时间复杂度O(log(n))
for (int i = 0; i < k; i++) {
available.add(i);
}
//busy存储运行中的请求并根据结束时间排序
PriorityQueue<int[]> busy = new PriorityQueue<int[]>((a, b) -> a[0] - b[0]);
//request记录各服务器访问次数
int[] requests = new int[k];
//遍历请求
for (int i = 0; i < arrival.length; i++) {
//当前时间为 arrival[i] 将该busy中结束时间在该时间之前的元素弹出,加入到avaible序列中
while (!busy.isEmpty() && busy.peek()[0] <= arrival[i]) {
available.add(busy.poll()[1]);
}
//无可用服务器,直接丢弃该请求
if (available.isEmpty()) {
continue;
}
//获得该请求运行的服务器
Integer p = available.ceiling(i % k);
if (p == null) {
p = available.first();
}
requests[p]++;
//将该请求加入到busy中,同时从avaible中移除该服务器
busy.offer(new int[]{arrival[i] + load[i], p});
available.remove(p);
}
//获取流的最大值
int maxRequest = Arrays.stream(requests).max().getAsInt();
List<Integer> ret = new ArrayList<Integer>();
for (int i = 0; i < k; i++) {
if (requests[i] == maxRequest) {
ret.add(i);
}
}
return ret;
}
}
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/find-servers-that-handled-most-number-of-requests/solution/zhao-dao-chu-li-zui-duo-qing-qiu-de-fu-w-e0a5/
来源:力扣(LeetCode)
方法二
class Solution {
public List<Integer> busiestServers(int k, int[] arrival, int[] load) {
PriorityQueue<Integer> available = new PriorityQueue<Integer>((a, b) -> a - b);
for (int i = 0; i < k; i++) {
available.offer(i);
}
PriorityQueue<int[]> busy = new PriorityQueue<int[]>((a, b) -> a[0] - b[0]);
int[] requests = new int[k];
for (int i = 0; i < arrival.length; i++) {
while (!busy.isEmpty() && busy.peek()[0] <= arrival[i]) {
int id = busy.peek()[1];
busy.poll();
available.offer(i + ((id - i) % k + k) % k); // 保证得到的是一个不小于 i 的且与 id 同余的数
}
if (available.isEmpty()) {
continue;
}
int server = available.poll() % k;
requests[server]++;
busy.offer(new int[]{arrival[i] + load[i], server});
}
int maxRequest = Arrays.stream(requests).max().getAsInt();
List<Integer> ret = new ArrayList<Integer>();
for (int i = 0; i < k; i++) {
if (requests[i] == maxRequest) {
ret.add(i);
}
}
return ret;
}
}
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/find-servers-that-handled-most-number-of-requests/solution/zhao-dao-chu-li-zui-duo-qing-qiu-de-fu-w-e0a5/
来源:力扣(LeetCode)
优先队列实现avaiable和busy,基本思想一样.
总结
TreeSet和Priority结合使用代替数组,将时间复杂度从n将为log(n),本题中,时间这一特征是有序的,或者说不同请求的结束时间的有序的,因此可以用树结构存储.
获取流的最大值
一段感觉很实用的代码.
int maxRequest = Arrays.stream(requests).max().getAsInt();
其中requests为一个数组.