自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Jin_Kwok的博客

让时间掷地有声

  • 博客(267)
  • 资源 (1)
  • 收藏
  • 关注

原创 推荐系统(二十二):基于MaskNet和Wide&Deep的商品推荐CTR模型实现

首先介绍将 MaskNet 和 Wide&Deep 结合应用的优势(源于工业级应用实践),然后实现了一个基于MaskNet 和 Wide&Deep 的商品推荐 CTR 模型。提供完整、注释详实的代码,帮助读者快速理解和学习。

2025-04-05 21:48:32 1313

原创 推荐系统(十七):在TensorFlow中用户特征和商品特征是如何Embedding的?

本文以 TensorFlow 为例,解读用户特征和商品特征 Embedding 的原理。通过阅读此文,读者可以更加清楚的知道不同类型的特征(类别特征、数值特征、ID 特征)的Embedding 方式差异。

2025-03-29 17:13:20 626

原创 白话 Transformer 原理-以 BERT 模型为例

深入解读 Transformer 底层原理,结合大量生动的案例和图例推演,如同白话,阐述 Transformer 相关的多头注意力机制(Multi-Head Attention)、位置编码(Positional Encoding)、前馈神经网络(Feed Forward Neural Network)、Softmax等环节。同时详细解读了模型预训练、微调、运行的原理。

2024-01-30 19:58:57 1314

原创 导读:Python 简史

在正式学习 Python 之前,我们应该对以下内容有所了解。Python 读音Python(英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/),是一种面向对象的解释型计算机程序设计语言,由荷兰人 Guido van Rossum 于1989年发明,第一个公开发行版发行于1991年。Python 命名Python 命名的由来颇具感性色彩,1989年圣诞节期间,在阿姆斯特丹,Gui...

2020-10-28 16:05:54 4842

原创 Python数据可视化:Matplotlib直方图、条形图、折线图、散点图、热图、饼图、极线图、气泡图尽收此处

Python数据可视化,Matplotlib绘图原理,直方图、条形图、折线图、散点图、热图、饼图、极线图、气泡图尽收此处。文章列表《Python数据可视化第1讲:matplotlib绘图原理》《Python数据可视化第 2 讲:matplotlib绘图中文字体设置》《Python数据可视化第 3讲:matplotlib绘图之函数plot()》《Python数据可视化第 4讲:matplotlib多图绘制函数subplot》《Python数据可视化第 5讲:matplotlib绘制条形图

2020-05-31 00:12:16 1183

原创 谈谈应聘阿里全流程(良心之作,好评满满)

应聘阿里是一个相对较长的流程,涉及岗位选择、简历投递、简历评估、技术面试、HR面试、背景调查、入职材料准备等环节。其中,关于技术面试,网上有很多优秀的攻略,但普遍聚焦于“纯知识点”总结,而阿里的技术面试并非单纯的知识点问答,单从技术层面做准备并不可取,此外,应聘流程中还有很多需要注意的点。

2019-05-04 22:02:53 24512 21

原创 推荐系统(二十五):基于阿里DIN(Deep Interest Network)的CTR模型实现

本文介绍并实现了阿里巴巴于2017年提出的DIN(论文《[Deep Interest Network for Click-Through Rate Prediction》)。DIN 的核心目标是捕捉用户动态变化的兴趣,特别是在用户历史行为中与当前候选商品相关的兴趣。DIN 通过注意力机制实现了用户兴趣的动态捕捉,成为推荐系统领域的里程碑式工作。其设计思想(如局部激活、数据自适应)对后续模型(如Transformer)也有深远影响。

2025-05-09 17:53:53 562

原创 推荐系统(二十四):Embedding层的参数是如何在模型训练过程中学习的?

近来有不少读者私信我关于嵌入层(Embedding层)参数在模型训练过程中如何学习的问题。虽然之前已经在不少文章介绍过 Embedding,但是为了读者更好地理解,笔者将通过本文详细解读嵌入层(Embedding Layer)的参数如何更新的,尤其是在反向传播过程中,为什么输入层的参数会被更新,而通常反向传播更新的是神经网络的权重参数,而不是输入数据,很多读者可能会混淆输入数据和嵌入层的权重参数。

2025-04-23 19:57:45 796

原创 推荐系统(二十三):一文读懂MaskNet与Wide&Deep结合的几种架构

MaskNet被提出之后并未引起关注,后来Twitter开源了基于MaskNet实现的推荐算法,并在多个数据集上取得了最优结果。之后,阿里巴巴等一众企业相继跟进,将 MaskNet 应用于工业实践,均取得不错效果。本文将详细介绍MaskNet的两种模式(Serial Model和Parallel Model)的实现,并与Wide&Deep模型结合,提供完整代码,便于读者理解和应用。

2025-04-06 14:52:25 699

原创 推荐系统(二十一):基于MaskNet的商品推荐CTR模型实现

MaskNet 是微博团队 2021 年提出的 CTR 预测模型。MaskNet通过掩码自注意力机制,在推荐系统中实现了高效且鲁棒的特征交互学习,特别适用于需处理长序列及噪声数据的场景。MaskNet 在 。本文基于 MaskNet 实现一个CTR模型。

2025-04-03 21:38:33 1173

原创 推荐系统(二十):TensorFlow 中的两种范式 tf.keras.Model 和 tf.estimator.Estimator

tf.keras.Model 和 tf.estimator.Estimator 是两种不同的高级 API 实现方式,本文从设计理念、使用场景和实现流程等方面简要介绍其差异。

2025-03-30 22:44:59 434

原创 推荐系统(十九):优势特征蒸馏(Privileged Features Distillation)在商品推荐中的应用(二)

笔者将基于 PFD 思想实现一个多任务模型:其中,Teacher 模型采用 Wide&Deep 模型,而 Student 模型则采用 ESMM 模型。

2025-03-30 22:21:23 345

原创 推荐系统(十八):优势特征蒸馏(Privileged Features Distillation)在商品推荐中的应用

在商品推荐系统中,粗排和精排环节的知识蒸馏方法主要通过复杂模型(Teacher)指导简单模型(Student)的训练,以提升粗排效果及与精排的一致性。本文将以淘宝的一篇论文《Privileged Features Distillation at Taobao Recommendations》中介绍的 PFD(Privileged Features Distillation)方法为例实现一个Demo,帮助读者学习知识蒸馏。

2025-03-30 22:00:46 807

原创 推荐系统(十六):基于ESMM的商品召回/推荐系统

ESMM(Entire Space Multi-Task Model)是阿里巴巴提出的多任务学习框架,通过联合建模点击率(CTR)和点击转化率(CVR)解决传统CVR模型样本稀疏问题。其核心思想是将 CVR 定义为 CTR 与 CTCVR 的条件概率,模型包含两个子任务。

2025-03-28 21:45:27 824

原创 推荐系统(十五):基于双塔模型的多目标商品召回/推荐系统

本文基于TensorFlow构建了一个支持多任务学习的双塔推荐模型,可同时预测点击率(CTR)和转化率(CVR)。通过用户塔和商品塔的分离式设计,模型既能捕捉用户兴趣偏好,又能理解商品特征,最终通过向量相似度计算生成推荐结果

2025-03-27 21:56:11 898

原创 推荐系统(十四):基于Wide&Deep模型的多目标商品推荐系统

本文采用 Google 提出的 Wide&Deep 模型架构,结合线性模型的记忆能力与深度神经网络的泛化能力,实现用户点击率(CTR)和转化率(CVR)的双目标预测。系统流程包含数据模拟、特征工程、模型构建、训练评估和服务部署五个核心环节

2025-03-27 15:37:09 383

原创 推荐系统(十三):基于代码详细解读 Wide&Deep 模型在商品推荐领域的应用

本文将基于代码示例(完整代码)解读 Wide&Deep 模型在商品推荐领域的应用。其中涉及特征工程、模型训练、模型导出、模型调用等内容。对于正在学习推荐系统的读者,本文是一篇难得的理论与实践结合的技术文章。

2025-03-26 15:14:55 413

原创 推荐系统(零):Mac M1 本地安装 Tensorflow Python环境

Mac M1 本地安装Tensorflow python 环境

2025-03-20 20:23:44 493

原创 Java 日志系列(三):日志使用示例及常见报错

详细解读Java日志使用案例及常见报错1: Failed to load class "org.slf4j.impl.StaticLoggerBinder";报错2:Class path contains multiple SLF4J bindings;报错3:Detected both log4j-over-slf4j.jar AND bound slf4j-log4j12.jar on the class path, preempting StackOverflowError

2023-09-12 09:54:34 611

原创 Java 日志系列(二):Java 日志使用中需要遵循的规范及注意事项

笔者将通过 3 篇文章全面系统地介绍 Java 日志框架,主要内容如下:日志的意义与价值;Java 日志框架进化史;日志门面与日志系统;日志框架的使用选择;日志使用中需要遵循的规范及注意事项;日志使用示例及常见报错。本文作为日志话题的第二篇,将结合具体案例介绍日志的使用。

2023-09-11 10:13:07 1356

原创 Java 日志系列(一):详解主流日志框架Log4j、Log4j 2、JUL、Commons Logging和Slf4j&Logback

优雅的日志系统可以记录操作轨迹,监控系统运行状况以及回溯系统故障。在工作中,部分工程师对主流的日志框架仍然是一知半解,日常应用还停留在复制粘贴的层面,因此写作本文,希望对读者有所帮助。笔者将通过 3 篇文章全面系统地介绍 Java 日志框架,主要内容如下:日志的意义与价值;Java 日志框架进化史;日志门面与日志系统;日志框架的使用选择;日志使用中需要遵循的规范及注意事项;日志使用示例及常见报错。

2023-09-11 10:00:54 2697

原创 后端开发进阶之路:后端开发核心竞争力之一抽象建模能力

服务端开发工程师在大部分工作时间里并不是在写代码,而是在抽象建模。工程师需将业务需求抽象成领域模型、模块、服务和系统,面向对象开发时需抽象出类和对象,面向过程开发时抽象出方法和函数。某种意义上,软件的本质就是抽象,建模则是系统地实施抽象的过程。作为一种将事物形象化的有效手段,建模可将现实世界中的事物及事物之间的关系准确地表达出来。本文通过一个真实案例详细深入浅出解读抽象建模。

2023-09-08 17:30:41 515 1

原创 后端开发进阶之路:从 Lock 指令前缀切入,解读 Java Volatile、CAS 及 Automic 包

初见之下,锁如同一把“万能钥匙”,但其缺陷也很明显——较“重”,并不适合简单的应用场景,比如,多线程环境下保证共享变量 i++ 操作的原子性,加锁可以实现,但有点“牛刀杀鸡” 的味道。因此,Java 提供了更 “轻” 的方案:volatile、CAS 和 Automic 系列原子类。三者联系紧密,volatile 和 CAS 都是基于 LOCK 指令前缀实现的,Automic 系列原子类是基于 volatile 和 CAS 实现的。

2023-09-05 17:35:41 569

原创 后端开发进阶之路:深入解读 Java 异常堆栈丢失原因

在应用程序的开发和维护中,通常需要借助运行日志来监控和定位问题。其中,在日志中打印异常堆栈信息对于定位问题极为重要,作为开发,对打印异常堆栈应该不陌生。笔者在实践中曾遇到一个奇怪的现象: Java 应用运行中,当发生 NullPointerException、ArithmeticException、ArrayStoreException、ClassCastException、ArrayIndexOutOfBoundsException 这几种异常时,异常的堆栈信息有时会莫名其妙地“丢失”。

2023-09-04 20:05:08 1129

原创 阿里面试经验分享:从被回绝到Offer,详解应聘阿里技术岗位注意事项

本文是《谈谈应聘阿里全流程》的姊妹篇,《谈谈应聘阿里全流程》发布后,收到了很多读者的积极反馈,但其中也反映出读者普遍的困惑:清楚了应聘流程,该如何有针对性地做应聘准备呢?这个问题从正面并不好回答,那么,不妨逆向寻解:本文将详细介绍那些导致应聘者被回绝的系列因素,并基于这些因素有针对性地阐述应对方案;同时解读应聘准备和面试环节需要注意的事项。

2023-09-01 22:34:46 1945 1

原创 AI时代又如何?程序员无须焦虑

2022 年 11 月 30 日,OpenAI 发布了一款名为 ChatGPT(Chat Generative Pre-trained Transformer) 的聊天机器人程序,旋即引爆网络,给全球带来了巨大冲击。紧随其后,各种大语言模型如雨后春笋不断出现。国外如 Google 的 Bard、Anthropic 的 Claude,国内如百度文心一言、阿里通义千问、讯飞星火认知大模型、昆仑万维天工大模型等。

2023-08-16 21:12:26 610

转载 推荐系统(十一):推荐系统中的 Embedding

推荐系统中的 Embedding

2023-07-26 21:03:02 3733 1

原创 推荐系统(十)用户行为序列建模-Pooling 路线

用户历史行为是非常重要的信息。基于丰富、不同用户差异大、随时间不断变化的行为数据,如何有效利用这些信息,挖掘出用户隐藏在行为背后的真正兴趣,从而将其准确表达出来,既能体现出不同用户的差异性,又能捕捉到用户兴趣随着时间的变化,对推荐效果非常关键。

2023-07-25 16:51:13 3829

原创 推荐系统(九)SENet 双塔模型在推荐领域召回粗排的应用

在推荐领域,双塔模型是粗排/召回环节应用最为广泛的算法模型,各种改进型双塔模型层出不穷,本文介绍一种基于 SENet 的双塔模型。

2023-07-21 21:10:57 2999

转载 推荐系统(八)分类 TAB 商品流多目标精排模型的演进

分类 TAB 商品流是得物 App 购买页面内除“推荐”页外的所有 TAB 内的商品推荐流,如“鞋类”、“箱包”等。当用户进入分类 TAB 中,我们可以简化为给定 三元组的商品流推荐,可以看出,分类 TAB 的推荐场景跟其他“开放式”推荐场景的最大差异在于,是限定条件下(品类)的推荐,与搜索场景有一点相似度,分类 TAB 代表着用户的品类意图。以我们目前的迭代进度,现阶段主要聚焦于 的二元建模,实际上

2023-07-21 11:32:01 1307

原创 推荐系统(七)知识蒸馏优化粗排模型

上篇文章(机器学习33:《推荐系统-VI》双塔模型)介绍了双塔模型,分析了其存在问题以及基本优化思路,本文梳理粗排模型从预估分、排序结果、特征三个方面蒸馏学习精排模型。

2023-07-19 19:52:06 1488

原创 推荐系统(六)双塔模型

双塔模型是推荐场景中常用的粗排模型之一,本节主要介绍几种典型的双塔模型及其变型,如SENet 双塔模型,并联双塔,蒸馏学习,对偶增强双塔,阿里 COLD。

2023-07-19 18:05:10 3870

原创 推荐系统(五)再谈召回、打分和重排

在《机器学习28:推荐系统-概述》一文中,笔者概述了推荐系统的基本术语和一般架构,通过【推荐系统 I~IV】系列课程的学习,相信读者对推荐系统已经有了一定的理解。本节,我们再来回顾一下推荐系统的核心环节——召回、打分、重排。

2023-07-18 17:35:19 956

原创 推荐系统(四)深度神经网络DNN

深度神经网络 (DNN) 模型可以解决矩阵分解的这些局限性。DNN 可以轻松地合并 User 特征和 Item 特征(由于网络输入层的灵活性),从而帮助捕获用户的特定兴趣并提高推荐的相关性。

2023-07-13 17:51:13 1771 1

原创 推荐系统(三)使用 TensorFlow 构建电影推荐系统

本文将介绍基于MovieLens 数据集创建一个电影推荐系统的方法。具体而言,包括探索电影数据,训练矩阵分解模型,检查嵌入,矩阵分解中的正则化,Softmax 模型训练等内容。

2023-07-10 15:09:10 1625

原创 推荐系统(二)协同过滤

在《机器学习28:《推荐系统-I》概述》一文中,笔者介绍了“基于内容过滤(content-based filtering)”和“协同过滤(Collaborative Filtering)”两种常见的【候选 Item 池】生成方法。其中,基于内容过滤非常简单,当然,其局限性也很明显。相较之下,协同过滤会同时利用 User 和 Item 之间的相似性来推荐。

2023-07-07 17:07:22 1131

原创 推荐系统(一)概述

在互联网领域,推荐系统(Recommendation Systems)的应用非常广泛。在音视频方面,如抖音、快手、哔哩等;在电商平台方面,如京东、淘宝、拼多多等。推荐有助于帮助用户快速发现潜在感兴趣的内容(音视频、商品、新闻等信息流),从而提升用户体验,同时有助于提升商业效率。从本文开始,笔者将结合自身在信息流推荐领域的经验,通过系列文章对推荐系统展开介绍。

2023-07-07 15:15:44 5438

原创 机器学习27:使用 Pandas 和 TensorFlow 进行数据建模编程实践

本文详细介绍了基于Pandas 和 TensorFlow 探索、清理以及转换用于训练模型数据集的方法,辅以代码和图片。

2023-07-06 16:12:09 979

原创 机器学习26:《数据准备和特征工程-IV》数据转换

特征工程 是确定哪些特征可能对训练模型有用,然后通过转换日志文件等数据来源中的原始数据来创建这些特征的过程。在本文中,笔者将重点讨论何时以及如何转换数字和分类数据,以及不同方法的权衡。

2023-07-05 21:32:33 2191 1

原创 机器学习25:《数据准备和特征工程-III》采样和分隔

作为机器学习项目的基础,本文聚焦于解读数据采用和数据分割。

2023-07-05 17:58:24 817

SimHei-config.zip

SimHei.ttf 字体文件,适用于Mac OX,Linux等系统平台。特别适用于 matplotlib 绘图中文标签报错的问题

2020-05-28

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除