python中pandas库的使用以及在机器学习数据处理中的简单应用

一、Pandas

Pandas是一个功能强大且易于使用的Python数据分析库,提供了高效的数据结构和数据分析工具,特别适合处理表格数据(如Excel表格、CSV文件等)。以下是Pandas在数据处理中的常见应用及其功能介绍。

导入Pandas库

import pandas as pd

数据结构

Pandas主要提供了两种数据结构:SeriesDataFrame

1. Series

Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)和一组与之相关的数据标签(即索引)组成。

import pandas as pd

# 创建一个Series
s = pd.Series([1, 3, 5, np.nan, 6, 8])
print(s)
2. DataFrame

DataFrame是一个二维的表格数据结构,包含一组有序的列,每列可以是不同的数据类型(数值、字符串、布尔值等)

import pandas as pd
import numpy as np

# 创建一个DataFrame
data = {
    'A': [1, 2, 3, 4],
    'B': [np.nan, 2.5, 3.5, np.nan],
    'C': ['foo', 'bar', 'baz', 'qux']
}
df = pd.DataFrame(data)
print(df)

数据读取

Pandas可以从多种数据源读取数据,例如CSV文件、Excel文件、SQL数据库等。

# 读取CSV文件
df = pd.read_csv('data.csv')

# 读取Excel文件
df = pd.read_excel('data.xlsx', sheet_name='Sheet1')

# 读取SQL数据库
import sqlite3
conn = sqlite3.connect('database.db')
df = pd.read_sql('SELECT * FROM table_name', conn)

数据清洗

数据清洗是数据分析中一个重要的步骤,Pandas提供了丰富的功能来处理缺失值、重复值等问题<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值