机器学习:Shapelet(学习笔记)

本文主要基于Time Series Shapelets: A New Primitive for Data Mining

KDD'    2009

Author : Lexiang Ye, Eamonn Keogh

对该论文的理解,所以该文中有关shapelet的信息都是有关原始shapelet的理解

一、Shapelet的概述

Shapelet可以拆成Shape与let,Shape是形状,-let表示“小”的后缀,Shapelet即表示时间序列的“小形状”,即一个子序列。这个子序列是这段时间序列数据中一个特别的子序列,其能表达时序数据中最显著的特点。

找到最有代表性的一段子序列(Shapelet)用于分类

Shapelet实际上是一种特征提取的方法

Time series -> shapelet

原始shapelet分类器有两个主要局限性
首先,它很慢:shapelet发现过程非常耗时。其次,通过使决策树成为算法的一个组成部分,它无法将形状元素与其他分类器结合。

shapelet是时间序列中能最大程度反映类别信息的连续子序列, 它可以很好地解释分类结果

背景

时间序列分类定义

给定一个包含N个时间序列对象的数据集(每个时间序列对象的长度可能不一样),其中每个时间序列对象Ti属于一个类别ci(ci∈C),然后对没有标签的时间序列对象进行分类。

应用:故障检测、健康检测。例如:对一个机器进行长期监测,并标注出现的故障为异常,就可以用来检测每天是否正常运行。

 传统方法

全量时序数据用来判断(knn,DTW)

问题:非常耗时,解释性差(早期,现在好像具有很好的解释性)

二、Shapelet初阶方法-找shapelet

1.shapelet长度=[Minlen,Maxlen]

2.截取每个时间序列对象T对应长度的子序列,作为shapelet candidates

       例:时间序列对象为[1,1,2,2,3,3,5],shapelet可以有[1,1,2]、[1,2,2]、······、[1,,1,2,2]、                          [1,2,2,3]、[2,2,3,3,5]。(任意子序列)

3.遍历每个shapelet candidate,计算找到最优的shapelet

 如何判断是否是最优的shapelet&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值