(重点)最短路径

最短路径

图论中可以算最重要的算法之一。可以解决很多问题。
分为很多种算法
1.floyed(图中每对顶点(任意两点)之间的最短路径)
2.dijkstra(图中一个顶点到其他顶点的最短路径)
3.bellman—ford(求单源点到其他点的最短距离,可判断是否有负环)
4.SPFA(对bellman—ford的改进)

三角形迭代

求最小路的基础

if  (d[i][k]+d[k][j]<d[i][j] )
    d[i][j]=d[i][k]+d[k][j]

这里写图片描述

1.floyed

概念

枚举每个点k,再枚举每两个点【i,j】。用k对【i,j】迭代,求最短路。

代码

void floyed()
{
    //初始化条件:
    a[i][j]=0  //自己到自己为0;对角线为0;
    a[i][j]=边权,i与j有直接相连的边
    a[i][j]= +∞ ,i与j无直接相连的边。
                  //  一般设为: memset  10  即可;

    for(int k=1;k<=n;k++)
      for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
          if(a[i][j]>a[i][k]+a[k][j])
            a[i][j]=a[i][k]+a[k][j];
}

图示

这里写图片描述

输出路径

用二维数组存储两点之间的路过点。

void dfs(int i,int j)
{
    if (i==j)
      cout<<i<<' ';
    else 
      if(path[i][j]>0)
       {
         dfs(i,path[i][j]);
         cout<<j<<' ';
       }
}
void floyed_path(int st,int ed)
{
    //初始化:
    path[i][j]=i;  path[j][i]=j;
  for (int k=1;k<=n;k++)
    for (int i=1;i<=n;i++)
      for (int j=1;j<=n;j++)
        if  (d[i][k]+d[k][j]<d[i][j] )
          {
            d[i][j]=d[i][k]+d[k][j];
            path[i][j]=path[k][j]
          }//存储路径 
  dfs(st,ed); 
}

2.dijkstra

概念

每次找距离单源点最近的点,以它为结点,进行对其他所有点的迭代,更行他们目前到源点的最短路径的算法
这里写图片描述

代码

void dijkstra(int s)
{
    memset(dis,10,sizeof(dis));
    memset(f,0,sizeof(f));
    dis[s]=0;
    f[s]=1;
    for(int i=1;i<=n;i++) 
      dis[i]=a[s][i];
    for(int i=1;i<n;i++)
      {
        int minn=dis[0],c=0;
        for(int j=1;j<=n;j++)
          if(!f[j]&&dis[j]<minn)
            {
                minn=dis[j];
                c=j;
            }
        if (c==0) break;
        f[c]=1;
        for(int j=1;j<=n;j++)
          if (!f[j]&&dis[c]+a[c][j]<dis[j])
            dis[j]=dis[c]+a[c][j];
      }
}

图示

这里写图片描述
这里写图片描述

输出路径

void dfs(int i,int j)
{
    if (i==j)
      cout<<i<<' ';
    else 
      if (path[j]>0)
        {
          dfs(i,path[j]);
          cout<<j<<' ';
        }
}//其实同floyed。 
void dijkstra(int s,int e)
{
    int path[maxn]={};
    memset(dis,10,sizeof(dis));
    memset(f,0,sizeof(f));
    dis[s]=0;
    f[s]=1;
    for(int i=1;i<=n;i++)
      { 
        dis[i]=a[s][i];
        path[i]=s;//有边存顶点 
      }
    for(int i=1;i<n;i++)
      {
        int minn=dis[0],c=0;
        for(int j=1;j<=n;j++)
          if(!f[j]&&dis[j]<minn)
            {
                minn=dis[j];
                c=j;
            }
        if (c==0) break;
        f[c]=1;
        for(int j=1;j<=n;j++)
          if (!f[j]&&dis[c]+a[c][j]<dis[j])
            {
              dis[j]=dis[c]+a[c][j];
              path[j]=c;
            }
      }
      dfs(s,e); //搜结尾 
}

3.bellman—ford

概念

就是取每条边,每次用边起点x迭代终点y。(无向图中也要用y迭代x)
重复上述操作,直至没有边可以进行迭代,或已重复N次操作,就退出。
若迭代了N次,说明有负环!!!

代码

bool bellman-ford(int s)
{
    memset(dis,10,sizeof(dis));//初始化 
    dis[s]=0;
    for(int i=1;i<n;i++)
      {
        bool flag=0;
        for(int i=1;i<=t;i++)
          {
            if (dis[a[i].x]+a[i].v<dis[a[i].y])
              {
                flag=1;
                dis[a[i].y]=dis[a[i].x]+a[i].v;
              }
          }
        if(!flag) return 0;//没有迭代,退出。 
      }
    return 1;//有负环 
}

图示

这里写图片描述
这里写图片描述

4.spfa

概念

bellman-ford算法可以判断负权回路,可以求单源点最短路。但枚举N次,每次枚举所有边,那么他的效率还是比较低的。
其实对于一条边【i,j】,若上次dis【i】没有改变,那么就不需要对这条边进行处理(因为处理了也没有变化)
所以SPFA对bellman—ford进行了改进,用队列存储所有被迭代过的点,每次处理队头,并用他来迭代所有与他连边的点,使被迭代的点入队。
同时!!!队头是要出队的(因为他下次可能会被其他点又迭代了)

代码

void spfa(int s)
{
    memset(dis,10,sizeof(dis));
    int q[maxn]={};
    bool vis[maxn]={};
    dis[s]=0;
    vis[s]=1;//初始化 
    q[1]=s;
    int head=0,tail=1;
    while (++head<=tail)
      {
        int ts=q[head];
        vis[ts]=0;//出队; 
        for(int i=linkk[ts];i;i=a[i].next)
          {
            int te=a[i].y;
            if (dis[ts]+a[i].v<dis[te]) 
              {
                dis[te]=a[i].v+dis[ts];
                if (!vis[te])
                  {
                    vis[te]=1;
                    q[++tail]=te;
                  }
              }
          }
      }
}

图示

这里写图片描述

总结

比较

1.floyed
时间复杂度为O(N^3);
可以求任两点间距离;
比较稳定;
代码最简单;
2.dijkstra
时间复杂度为O(N^2);
单源点最短路;
也较稳定;
代码较简单;
负权回路不适用;
可用堆优化。(蒟蒻萝卜并不会。。百度大佬博客)
3.bellman—ford
时间复杂度O(V^3);
便于求负权回路;
效率较慢;
4.spfa
时间复杂度不好算,但平均较低;
采用更新队列优化bellman—ford;
性价比较高。

图示

这里写图片描述

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值