泰勒展开的推导及应用

设已知函数 f ( x ) f(x) f(x),需要将其表示为

g ( x ) = ∑ i = 0 ∞ a i x i g(x)=\sum_{i=0}^{\infty}a_ix^i g(x)=i=0aixi

先只考虑在 x = 0 x=0 x=0 处展开的情况,因为其他情况可将函数平移转化得到。

那么依次考虑 a i a_i ai 的求法。

我们规定 f ( n ) ( x ) f^{(n)}(x) f(n)(x) 表示 f ( x ) f(x) f(x) n n n 阶导函数(求 n n n 次导),则

g ( n ) ( x ) = ∑ i = 0 ∞ ( i + n ) ! × a i + n x i g^{(n)}(x)=\sum_{i=0}^{\infty}(i+n)!\times a_{i+n}x^i g(n)(x)=i=0(i+n)!×ai+nxi

g ( n ) ( 0 ) = n ! × a n g^{(n)}(0)=n!\times a_n g(n)(0)=n!×an,又因为 f ( x ) = g ( x ) f(x)=g(x) f(x)=g(x),所以 f ( n ) ( 0 ) = g ( n ) ( 0 ) f^{(n)}(0)=g^{(n)}(0) f(n)(0)=g(n)(0),即 n ! × a n = f ( n ) ( 0 ) n!\times a_n=f^{(n)}(0) n!×an=f(n)(0),而等式右边又是已知的,则 a n = f ( n ) ( 0 ) n ! a_n=\dfrac{f^{(n)}(0)}{n!} an=n!f(n)(0),我们就可以依次求出所有的 a i a_i ai

再考虑在 x = x 0 x=x_0 x=x0 处展开:

g ( x ) = ∑ i = 0 ∞ f ( i ) ( x 0 ) i ! ( x − x 0 ) i g(x)=\sum_{i=0}^{\infty}\frac{f^{(i)}(x_0)}{i!}(x-x_0)^i g(x)=i=0i!f(i)(x0)(xx0)i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值