【算法】组合数学1 - 球盒模型与第二类斯特林数

球盒模型

一共 8 8 8 类基本模型,以难度从易到难排序。

  • n n n有编号的球放入 k k k有编号的盒子,盒子中可以为空的方案数。

    • 每个球有 k k k 种选择, k n k^n kn
  • n n n无编号的球放入 k k k有编号的盒子,盒子中不可以为空的方案数。

    • 隔板法,可以看做在 n n n 个球的 n − 1 n-1 n1 个缝隙中插入 k − 1 k-1 k1 个隔板, ( n − 1 k − 1 ) \displaystyle\binom{n-1}{k-1} (k1n1)
  • n n n无编号的球放入 k k k有编号的盒子,盒子中可以为空的方案数。

    • 问题可以转化为 n + k n+k n+k 个无编号的球放入 k k k 个盒子,盒子中不可以为空的方案(多出来的 k k k 个球删掉后就变成了可以为空), ( n + k − 1 k − 1 ) \displaystyle\binom{n+k-1}{k-1} (k1n+k1)
  • n n n有编号的球放入 k k k无编号的盒子,盒子中不可以为空的方案数。

    • 斯特林数(详细讲解请参照后面), { n k } \begin{Bmatrix}n\\k\end{Bmatrix} {nk}
  • n n n有编号的球放入 k k k无编号的盒子,盒子中可以为空的方案数。

    • 枚举空的盒子个数, ∑ i = 0 k − 1 { n k − i } \displaystyle\sum_{i=0}^{k-1}\begin{Bmatrix}n\\k-i\end{Bmatrix} i=0k1{nki}
  • n n n有编号的球放入 k k k有编号的盒子,盒子中不可以为空的方案数。

    • 在盒子没有编号的基础上乘上盒子编号的方案, { n k } ⋅ k ! \begin{Bmatrix}n\\k\end{Bmatrix}\cdot k! {nk}k!
  • n n n无编号的球放入 k k k无编号的盒子,盒子中不可以为空的方案数 f ( n , k ) f(n,k) f(n,k)

  • n n n无编号的球放入 k k k无编号的盒子,盒子中可以为空的方案数 g ( n , k ) g(n,k) g(n,k)

    • 最后两种情况需要合并考虑,分别考虑两者之间的转换。

    • 对于不可为空的情况,可以先放 k k k 个球保证每个盒子都不为空,则显然有 f ( n , k ) = g ( n − k , k ) f(n,k)=g(n-k,k) f(n,k)=g(nk,k)

    • 对于可以为空的情况,分成每个盒子都不为空和至少有一个盒子为空两种情况,则 g ( n , k ) = f ( n , k ) + g ( n , k − 1 ) = g ( n − k , k ) + g ( n , k − 1 ) g(n,k)=f(n,k)+g(n,k-1)=g(n-k,k)+g(n,k-1) g(n,k)=f(n,k)+g(n,k1)=g(nk,k)+g(n,k1)

第二类斯特林数

{ k n } \{^n_k\} {kn} 表示将 n n n 个元素划分成 k k k 个非空集合的方案数。

考虑如何计算。

方法一(递推):

{ n + 1 k } = { n k − 1 } + k ⋅ { n k } \begin{Bmatrix}n+1\\k\end{Bmatrix}=\begin{Bmatrix}n\\k-1\end{Bmatrix}+k\cdot\begin{Bmatrix}n\\k\end{Bmatrix} {n+1k}={nk1}+k{nk}

  • 即第 n + 1 n+1 n+1 个元素单独放在第 k k k 个集合和将 n + 1 n+1 n+1 放在第 1 1 1 k k k 个集合的方案数之和。

方法二(容斥):

{ n k } = 1 k ! ∑ i = 0 k ( − 1 ) i ( k i ) ( k − i ) n \begin{Bmatrix}n\\k\end{Bmatrix}=\dfrac1{k!}\sum_{i=0}^k(-1)^i\binom{k}{i}(k-i)^n {nk}=k!1i=0k(1)i(ik)(ki)n

  • 上面的式子将 k ! k! k! 乘过去就可以看作对第六类球盒模型求答案。

  • 而由于要求盒子不可以为空,所以我们可以计算出空 0 , 1 , 2 , ⋯   , k 0,1,2,\cdots,k 0,1,2,,k 个盒子的方案数,即 k n , ( k − 1 ) n , ( k − 2 ) n , ⋯   , 1 k^n,(k-1)^n,(k-2)^n,\cdots,1 kn,(k1)n,(k2)n,,1,并通过容斥计算出答案。

  • 23
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值