山西NOIp四校联考部分解题报告

本文介绍了山西NOIp四校联考的编程竞赛中,涉及的D1T1 Color、D1T2 Rigel、D2T1 Area和D2T3 review四个题目。D1T1 Color可通过排列组合与快速幂解决;D1T2 Rigel利用差分数组求解最节省费用;D2T1 Area采用漂浮法计算覆盖矩形的总面积;D2T3 review通过缩点建图和贪心策略选择最大得分路径。文章强调利用计算机特性结合算法解决问题的重要性。
摘要由CSDN通过智能技术生成


D1T1 Color

题目描述

一个1*n的方格图形 (不可旋转),用m种颜色填涂每个方格。每个方格只能填涂一种颜色,如果有相邻的方格颜色相同则视为可行方案,问有多少种可行方案。.

输入格式:

两个正整数:m n

输出格式:

一个数:可能的填涂方式总数,mod100003。

输入样例:

2 3

输出样例:

6

样例解释:

6种可能的填涂方式:

0,0,0;   0,0,1;   0,1,1;  1,0,0;   1,1,0;   1,1,1
  • 对于10%的数据: m=2,n<33
  • 对于另外50%的数据: 1<m<10000,1<n<=106
  • 对于100%的数据: 1<=m<=108,1<=n<=1012

分析

  1. 20分做法:暴力搜索。考场上对于数学题的一般方法。
  2. 其他思路:暴力打表找规律法。
  3. NB方法:排列组合【我不会有木有】。

首先利用暴力搜索打一张表,包含了n = 1..8, m = 1..8的答案。然后开始找规律吧。至于怎么找,那就是仁者见仁智者见智了。我首先设 f(n) 为n个方格m种颜色的可行方案, g(n) 为不可行方案。显然有 g(n)=mnf(n) 。然后用某种灵感构造一个数列 h(n)=m×h(n1)+mn1h(n1) 。对照表,发现总有 f(n)=h(n)

时间复杂度(渐近时间复杂度的严格定义,NP问题,时间复杂度的分析方法,主定理)   排序算法(平方排序算法的应用,Shell排序,快速排序,归并排序,时间复杂度下界,三种线性时间排  序,外部排序)   数论(整除,集合论,关系,素数,进位制,辗转相除,扩展的辗转相除,同余运算,解线性同余方程,中国剩余定理) 指针(链表,搜索判重,邻接表,开散列,二叉树的表示,多叉树的表示) 按位运算(and,or,xor,shl,shr,一些应用) 图论(图论模型的建立,平面图,欧拉公式与五色定理,求强连通分量,求割点和桥,欧拉回路,AOV问题,AOE问题,最小生成树的三种算法,最短路的三种算法,标号法,差分约束系统,验证二分图,Konig定理,匈牙利算法,KM算法,稳定婚姻系统,最大流算法,最小割最大流定理,最小费用最大流算法) 计算几何(平面解几及其应用,向量,点积及其应用,叉积及其应用,半平面相交,求点集的凸包,最近点对问题,凸多边形的交,离散化与扫描) 数据结构(广度优先搜索,验证括号匹配,表达式计算,递归的编译,Hash表,分段Hash,并查集,Tarjan算法,二叉堆,左偏树,二斜堆,二项堆,二叉查找树,红黑树,AVL平衡树,Treap,Splay,静态二叉查找树,2-d树,线段树,二维线段树,矩形树,Trie树,块状链表) 组合数学(排列与组合,鸽笼原理,容斥原理,递推,Fibonacci数列,Catalan数列,Stirling数,差分序列,生成函数,置换,Polya原理) 概率论(简单概率,条件概率,Bayes定理,期望值) 矩阵(矩阵的概念和运算,二分求解线性递推方程,多米诺骨牌棋盘覆盖方案数,高斯消元) 字符串处理(KMP,后缀树,有限状态自动机,Huffman编码,简单密码学) 动态规划(单调队列,凸完全单调性,树型动规,多叉转二叉,状态压缩类动规,四边形不等式) 博奕论(Nim取子游戏,博弈树,Shannon开关游戏) 搜索(A*,ID,IDA*,随机调整,遗传算法)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值