基于python+unittest简单实现接口自动化测试实战教程

1、前言

本文通过从Postman获取基本的接口测试Code简单的接口测试入手,一步步调整优化接口调用,以及增加基本的结果判断,讲解Python自带的Unittest框架调用,期望各位可以通过本文对接口自动化测试有一个大致的了解。

为什么要做接口自动化测试?

在当前互联网产品迭代频繁的背景下,回归测试的时间越来越少,很难在每个迭代都对所有功能做完整回归。但接口自动化测试因其实现简单、维护成本低,容易提高覆盖率等特点,越来越受重视。

为什么要自己写框架呢?

使用Postman调试通过过直接可以获取接口测试的基本代码,结合使用requets + unittest很容易实现接口自动化测试的封装,而且requests的api已经非常人性化,非常简单,但通过封装以后(特别是针对公司内特定接口),可以进一步提高脚本编写效率。

2、一个现有的简单接口例子

下面使用requests + unittest测试一个查询接口

接口信息如下

请求信息:

Method:POST
URL:api/match/image/getjson

Request:

{
"category": "image",
"offset": "0",
"limit": "30",
"sourceId": "0",
"metaTitle": "",
"metaId": "0",
"classify": "unclassify",
"startTime": "",
"endTime": "",
"createStart": "",
"createEnd": "",
"sourceType": "",
"isTracking": "true",
"metaGroup": "",
"companyId": "0",
"lastDays": "1",
"author": ""
}

Response示例:

{
"timestamp" : xxx,
"errorMsg" : "",
"data" : {
"config" : xxx
}

3、测试思路

1.获取Postman原始脚本

2.使用requests库模拟发送HTTP请求**

3.对原始脚本进行基础改造**

4.使用python标准库里unittest写测试case**

原始脚本实现
未优化

该代码只是简单的一次调用,而且返回的结果太多,很多返回信息暂时没用,示例代码如下

import requests
 
url = "http://cpright.xinhua-news.cn/api/match/image/getjson"
 
querystring = {"category":"image","offset":"0","limit":"30","sourceId":"0","metaTitle":"","metaId":"0","classify":"unclassify","startTime":"","endTime":"","createStart":"","createEnd":"","sourceType":"","isTracking":"true","metaGroup":"","companyId":"0","lastDays":"1","author":""}
 
headers = {
    'cache-control': "no-cache",
    'postman-token': "e97a99b0-424b-b2a5-7602-22cd50223c15"
    }
 
response = requests.request("POST", url, headers=headers, params=querystring)
 
print(response.text)

优化 第一版

调整代码结构,输出结果Json出来,获取需要验证的response.status_code,以及获取结果校验需要用到的results['total']

#!/usr/bin/env python
#coding: utf-8
'''
unittest merchant backgroud interface
@author: zhang_jin
@version: 1.0
@see:http://www.python-requests.org/en/master/
'''
 
import unittest
import json
import traceback
import requests
 
 
url = "http://cpright.xinhua-news.cn/api/match/image/getjson"
 
querystring = {
    "category": "image",
    "offset": "0",
    "limit": "30",
    "sourceId": "0",
    "metaTitle": "",
    "metaId": "0",
    "classify": "unclassify",
    "startTime": "",
    "endTime": "",
    "createStart": "",
    "createEnd": "",
    "sourceType": "",
    "isTracking": "true",
    "metaGroup": "",
    "companyId": "0",
    "lastDays": "1",
    "author": ""
}
 
headers = {
    'cache-control': "no-cache",
    'postman-token': "e97a99b0-424b-b2a5-7602-22cd50223c15"
    }
 
#Post接口调用
response = requests.request("POST", url, headers=headers, params=querystring)
 
#对返回结果进行转义成json串
results = json.loads(response.text)
 
#获取http请求的status_code
print "Http code:",response.status_code
 
#获取结果中的total的值
print results['total']
#print(response.text)
优化 第三版

1.该版本改动较大,引入config文件,单独封装结果校验模块,引入unittest模块,实现接口自动调用,并增加log处理模块;
2.对不同Post请求结果进行封装,不同接口分开调用;
3.测试用例的结果进行统计并最终输出

#!/usr/bin/env python
#coding: utf-8
'''
unittest interface
@author: zhang_jin
@version: 1.0
@see:http://www.python-requests.org/en/master/
'''
 
import unittest
import json
import traceback
import requests
import time
import result_statistics
import config as cf
from com_logger import  match_Logger
 
 
class MyTestSuite(unittest.TestCase):
    """docstring for MyTestSuite"""
    #@classmethod
    def sedUp(self):
        print "start..."
    #图片匹配统计
    def test_image_match_001(self):
        url = cf.URL1
 
        querystring = {
            "category": "image",
            "offset": "0",
            "limit": "30",
          "sourceId": "0",
          "metaTitle": "",
          "metaId": "0",
          "classify": "unclassify",
          "startTime": "",
          "endTime": "",
          "createStart": "",
          "createEnd": "",
          "sourceType": "",
          "isTracking": "true",
          "metaGroup": "",
          "companyId": "0",
          "lastDays": "1",
          "author": ""
        }
        headers = {
            'cache-control': "no-cache",
            'postman-token': "545a2e40-b120-2096-960c-54875be347be"
            }
 
 
        response = requests.request("POST", url, headers=headers, params=querystring)
        if response.status_code == 200:
            response.encoding = response.apparent_encoding
            results = json.loads(response.text)
            #预期结果与实际结果校验,调用result_statistics模块
            result_statistics.test_result(results,196)
        else:
            print "http error info:%s" %response.status_code
 
        #match_Logger.info("start image_query22222")
        #self.assertEqual(results['total'], 888)
 
        '''
        try:
            self.assertEqual(results['total'], 888)
        except:
            match_Logger.error(traceback.format_exc())
        #print results['total']
        '''
 
    #文字匹配数据统计
    def test_text_match_001(self):
 
        text_url = cf.URL2
 
        querystring = {
            "category": "text",
            "offset": "0",
            "limit": "30",
            "sourceId": "0",
            "metaTitle": "",
            "metaId": "0",
            "startTime": "2017-04-14",
            "endTime": "2017-04-15",
            "createStart": "",
            "createEnd": "",
            "sourceType": "",
            "isTracking": "true",
            "metaGroup": "",
            "companyId": "0",
            "lastDays": "0",
            "author": "",
            "content": ""
        }
        headers = {
            'cache-control': "no-cache",
            'postman-token': "ef3c29d8-1c88-062a-76d9-f2fbebf2536c"
            }
 
        response = requests.request("POST", text_url, headers=headers, params=querystring)
 
        if response.status_code == 200:
            response.encoding = response.apparent_encoding
            results = json.loads(response.text)
            #预期结果与实际结果校验,调用result_statistics模块
            result_statistics.test_result(results,190)
        else:
            print "http error info:%s" %response.status_code
 
        #print(response.text)
 
    def tearDown(self): 
        pass
 
if __name__ == '__main__':
    #image_match_Logger = ALogger('image_match', log_level='INFO')
 
    #构造测试集合
    suite=unittest.TestSuite()
    suite.addTest(MyTestSuite("test_image_match_001"))
    suite.addTest(MyTestSuite("test_text_match_001"))
 
    #执行测试
    runner = unittest.TextTestRunner()
    runner.run(suite)
    print "success case:",result_statistics.num_success
    print "fail case:",result_statistics.num_fail
    #unittest.main()
最终输出日志信息
Zj-Mac:unittest lazybone$ python image_test_3.py 
测试结果:通过
 
.测试结果:不通过 
错误信息: 期望返回值:190 实际返回值:4522
 
.
----------------------------------------------------------------------
Ran 2 tests in 0.889s
 
OK
success case: 1
fail case: 1

后续改进建议

1.unittest输出报告也可以推荐使用HTMLTestRunner(我目前是对结果统计进行了封装)

2.接口的继续封装,参数化,模块化

3.unittest单元测试框架实现参数化调用第三方模块引用(nose-parameterized)

4.持续集成运行环境、定时任务、触发运行、邮件发送等一系列功能均可以在Jenkins上实现。

 

感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!有需要的小伙伴可以点击下方小卡片领取   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值