分析:不难发现,最有放置方法是贴住俩颗行星的某俩个面,而最近距离为各自重心到这俩个面的距离之和。换句话说,我们可以独立求出俩颗行星的
”重心到各面的最短距离“,再相加即可。
由于只给出了顶点,需要先求一次三维凸包,找到所有面,然后求出重心,最后依次计算重心到各个面的距离。如何求重心呢?因为行星是均匀的,可以先随便找一个位于
行星内部的点(比如所有顶点的坐标平均数),连接该点和各个面,得到若干个三棱锥。把每个三棱锥等价成一个质点,再求这些质点的重心。质点的重心是质点坐标按照质量
加权平均数,而质量均匀的三棱锥的重心的坐标为4个顶点坐标的平均数。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<string>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<stack>
#define LL long long
using namespace std;
const double eps=1e-5;
int dcmp(double x)
{
if(fabs(x)<eps)
return 0;
else
return x>0?1:-1;
}
struct Point3
{
double x,y,z;
Point3(double x=0,double y=0,double z=0):x(x),y(y),z(z) {}
};
typedef Point3 Vector3;
Vector3 operator + (const Vector3 &A,const Vector3 &B)
{
return Vector3(A.x+B.x,A.y+B.y,A.z+B.z);
}
Vector3 operator - (const Point3 &A,const Point3 &B)
{
return Vector3(A.x-B.x,A.y-B.y,A.z-B.z);
}
Vector3 operator *(const Vector3 &A, double p)
{
return Vector3(A.x*p,A.y*p,A.z*p);
}
Vector3 operator /(const Vector3 &A,double p)
{
return Vector3(A.x/p,A.y/p,A.z/p);
}
bool operator == (const Point3 &a,const Point3 &b)
{
return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0&&dcmp(a.z-b.z)==0;
}
double Dot(const Vector3 &A,const Vector3 &B) {return A.x*B.x+A.y*B.y+A.z*B.z;}
double Length(const Vector3 &A){return sqrt(Dot(A,A));}
double Angle(const Vector3 &A,const Vector3 &B){return acos(Dot(A,B)/Length(A)/Length(B));}
Vector3 Cross(const Vector3 &A,const Vector3 &B)
{
return Vector3(A.y*B.z-A.z*B.y,A.z*B.x-A.x*B.z,A.x*B.y-A.y*B.x);
}
double Area2(const Point3 &A,const Point3 &B,const Point3 &C)
{
return Length(Cross(B-A,C-A));
}
double Volume6(const Point3 &A,const Point3 &B,const Point3 &C,const Point3 &D)
{
return Dot(D-A,Cross(B-A,C-A));
}
Point3 read_point3()
{
Point3 p;
scanf("%lf%lf%lf",&p.x,&p.y,&p.z);
return p;
}
Point3 Centroid(const Point3 &A,const Point3 &B,const Point3 &C,const Point3 &D)
{
return (A+B+C+D)/4.0;
}
double rand01()
{
return rand()/(double)RAND_MAX;
}
double randeps()
{
return (rand01()-0.5)*eps;
}
Point3 add_noise(const Point3 &p)
{
return Point3(p.x+randeps(),p.y+randeps(),p.z+randeps());
}
struct Face
{
int v[3];
Face(int a,int b,int c)
{
v[0]=a;
v[1]=b;
v[2]=c;
}
Vector3 Normal(const vector <Point3> &P)const
{
return Cross(P[v[1]]-P[v[0]],P[v[2]]-P[v[0]]);
}
int CanSee(const vector<Point3> &P,int i) const
{
return Dot(P[i]-P[v[0]],Normal(P))>0;
}
};
vector<Face> CH3D(const vector<Point3> &P)
{
int n=P.size();
vector <vector<int> > vis(n);
for(int i=0;i<n;i++) vis[i].resize(n);
vector<Face> cur;
cur.push_back(Face(0,1,2));
cur.push_back(Face(2,1,0));
for(int i=3;i<n;i++)
{
vector<Face> next;
for(int j=0;j<cur.size();j++)
{
Face &f=cur[j];
int res=f.CanSee(P,i);
if(!res) next.push_back(f);
for(int k=0;k<3;k++) vis[f.v[k]][f.v[(k+1)%3]]=res;
}
for(int j=0;j<cur.size();j++)
for(int k=0;k<3;k++)
{
int a=cur[j].v[k],b=cur[j].v[(k+1)%3];
if(vis[a][b]!=vis[b][a]&&vis[a][b])
next.push_back(Face(a,b,i));
}
cur=next;
}
return cur;
}
struct ConvexPolyhedron
{
int n;
vector<Point3> P,P2;
vector<Face> faces;
bool read()
{
if(scanf("%d",&n)!=1) return false;
P.resize(n);
P2.resize(n);
for(int i=0;i<n;i++)
{
P[i]=read_point3();
P2[i]=add_noise(P[i]);
}
faces=CH3D(P2);
return true;
}
Point3 centriod()
{
Point3 C=P[0];
double totv=0;
Point3 tot(0,0,0);
for(int i=0;i<faces.size();i++)
{
Point3 p1=P[faces[i].v[0]],p2=P[faces[i].v[1]],p3=P[faces[i].v[2]];
double v=-Volume6(p1,p2,p3,C);
totv+=v;
tot=tot+Centroid(p1,p2,p3,C)*v;
}
return tot/totv;
}
double mindist(Point3 C)
{
double ans=1e30;
for(int i=0;i<faces.size();i++)
{
Point3 p1=P[faces[i].v[0]],p2=P[faces[i].v[1]],p3=P[faces[i].v[2]];
ans=min(ans,fabs(-Volume6(p1,p2,p3,C)/Area2(p1,p2,p3)));
}
return ans;
}
};
int main()
{
int n,m;
ConvexPolyhedron P1,P2;
while(P1.read()&&P2.read())
{
Point3 C1=P1.centriod();
double d1=P1.mindist(C1);
Point3 C2=P2.centriod();
double d2=P2.mindist(C2);
printf("%.5f\n",d1+d2);
}
return 0;
}