Google log 日志文件

一个IT从业人员,平时写代码过程必然会涉及到很多输出信息。很多时候输出的信息多了,前面输出的信息会被后面的信息覆盖,这就需要一种能把所有输出信息都保存下来的方法。 当然采用写txt文件文件的方法fwrite\ofstream也能达到同样的效果。但是这里记录Google开源的一种方法,在这仅介绍使...

2016-09-11 15:42:21

阅读数 1327

评论数 0

caffe的相关链接记录

转自:http://blog.csdn.net/u010402786/article/details/51262004 本来想自己详细写caffe源码的各个部分解析,后在网上看到很多大牛都写的非常好,于是我就将这些链接整理一下,方便查看。     Caffe版本   由于各...

2016-08-23 09:12:32

阅读数 285

评论数 0

数据标准化和归一化

1、标准化:           把数据转化成服从某种分布的数据        如:均值为0,方差为sigma的数据 A = floor(10*rand(10,1)); mA = mean(A,1); muA = mA-A; sq_muA =muA.^2; var = mean(sq_mu...

2016-05-06 17:23:36

阅读数 732

评论数 0

机器学习中的梯度下降法

感谢:http://www.kuqin.com/shuoit/20160330/351415.html 最优化问题是机器学习算法中非常重要的一部分,几乎每一个机器学习算法的核心都是在处理最优化问题。 本文中我讲介绍一些机器学习领域中常用的且非常掌握的最优化算法,看完本篇文章后你将会明白: ...

2016-04-09 17:53:06

阅读数 544

评论数 0

Cmaker 是什么

转自:http://blog.163.com/jacky_ling0/blog/static/1373925712011072375418/ 本节介绍CMake里最常用的三个命令,分别是cmake_minimum_required; project; add_executable等。 ...

2016-04-07 11:34:04

阅读数 1133

评论数 0

有关meanshift跟踪的理解(在opencv中实现)(转载)

http://okthen.blog.sohu.com/157859789.html meanshift算法思想其实很简单:利用概率密度的梯度爬升来寻找局部最优。它要做的就是输入一个在图像的范围,然后一直迭代(朝着重心迭代)直到满足你的要求为止。但是他是怎么用于做图像跟踪的呢?这是我自从学习m...

2015-10-14 09:54:07

阅读数 521

评论数 0

卷积神经网络CNN

近来在了解深度学习。深度神经网络的一大特点就是含有多隐含层。卷积神经网络(CNN)算是深度神经网的前身了,在手写数字识别上在90年代初就已经达到了商用的程度。本文中将简要介绍CNN,由于相应的博文资料已经很多,也写的很好,本篇最有价值的是参考资料部分。 前向神经网络数字识别 假...

2015-06-20 23:46:47

阅读数 588

评论数 0

SVM(六)将SVM用于多类分类

从 SVM的那几张图可以看出来,SVM是一种典型的两类分类器,即它只回答属于正类还是负类的问题。而现实中要解决的问题,往往是多类的问题(少部分例外,例如垃圾邮件过滤,就只需要确定“是”还是“不是”垃圾邮件),比如文本分类,比如数字识别。如何由两类分类器得到多类分类器,就是一个值得研究的问题。 ...

2015-04-28 22:11:50

阅读数 419

评论数 0

SVM(五)松弛变量

现在我们已经把一个本来线性不可分的文本分类问题,通过映射到高维空间而变成了线性可分的。就像下图这样: 圆形和方形的点各有成千上万个(毕竟,这就是我们训练集中文档的数量嘛,当然很大了)。现在想象我们有另一个训练集,只比原先这个训练集多了一篇文章,映射到高维空间以后(当然,也使用了相同的核函数),...

2015-04-28 22:10:37

阅读数 687

评论数 0

SVM(四)为何需要核函数

生存?还是毁灭?——哈姆雷特 可分?还是不可分?——支持向量机 之前一直在讨论的线性分类器,器如其名(汗,这是什么说法啊),只能对线性可分的样本做处理。如果提供的样本线性不可分,结果很简单,线性分类器的求解程序会无限循环,永远也解不出来。这必然使得它的适用范围大大缩小,而它的很多优点我们实在不...

2015-04-28 22:07:46

阅读数 453

评论数 0

SVM(三)

让我再一次比较完整的重复一下我们要解决的问题:我们有属于两个类别的样本点(并不限定这些点在二维空间中)若干,如图, 圆形的样本点定为正样本(连带着,我们可以把正样本所属的类叫做正类),方形的点定为负例。我们想求得这样一个线性函数(在n维空间中的线性函数):   g(x)...

2015-04-28 22:04:47

阅读数 389

评论数 0

SVM(二)线性分类器的求解——问题的描述

上节说到我们有了一个线性分类函数,也有了判断解优劣的标准——即有了优化的目标,这个目标就是最大化几何间隔,但是看过一些关于SVM的论文的人一定记得什么优化的目标是要最小化||w||这样的说法,这是怎么回事呢?回头再看看我们对间隔和几何间隔的定义:   间隔:δ=y(wx+b)=|g(x)|  ...

2015-04-28 21:53:47

阅读数 576

评论数 0

SVM的八股简介(一)

转自:http://www.cnblogs.com/cy163/archive/2009/01/02/1367284.html 最近看paper看到一个奇怪的公式,一头雾水,找了好多资料才知道是SVM、SVR。又看了很多博客还是一头雾水,很幸运,看到这篇文章,虽然有点啰嗦,但是很详细,看后明白了很...

2015-04-28 21:29:44

阅读数 593

评论数 0

KPCA存在模糊的地方

主成份(Principal Component Analysis)分析是降维(Dimension Reduction)的重要手段。每一个主成分都是数据在某一个方向上的投影,在不同的方向上这些数据方差Variance的大小由其特征值(eigenvalue)决定。一般我们会选取最大的几个特征值所在的特...

2015-04-15 09:43:54

阅读数 649

评论数 0

图像局部特征点检测算子综述

总体来说,图像特征可以包括颜色特征、纹理特等、形状特征以及局部特征点等。其中局部特点具有很好的稳定性,不容易受外界环境的干扰,本篇文章也是对这方面知识的一个总结。 1. 局部特征点 图像特征提取是图像分析与图像识别的前提,它是将高维的图像数据进行简化表达最有效的方式,从一幅图像的M×N×3...

2015-02-01 12:26:43

阅读数 1594

评论数 0

LS,MMSE,LMMSE,ML,MAP,LMS,AR,MSE误差介绍

出处http://bbs.cnttr.com/viewthread.php?tid=128502 Q:是否有朋友能对LS,MMSE,LMMSE,ML,MAP,LMS,AR,MSE误差等算法做一个比较清晰的介绍呢   S:     谈谈我的理解,不当之处欢迎大家指正: ...

2015-01-21 10:27:48

阅读数 2395

评论数 0

深度学习之前的基础知识理解

总结比较好的博客转载收藏了。 深度学习(Deep Learning),又叫Unsupervised Feature Learning或者Feature Learning,是目前非常热的一个研究主题。 本文将主要介绍Deep Learning的基本思想和常用的方法。 一. 什么是D...

2015-01-07 15:46:13

阅读数 684

评论数 0

深度置信网络(DBN)和受限玻尔兹曼机(RBM)

原博客于http://blog.163.com/silence_ellen/blog/static/176104222201431710264087/ 本篇非常简要地介绍了深度信念网络的基本概念。文章先简要介绍了深度信念网络(包括其应用实例)。接着分别讲述了:(1) 其基本组成结构——受限玻...

2015-01-07 09:41:38

阅读数 9911

评论数 3

Lasso思想及算法(摘抄)

学习L 1、只有这么几个人在做LASSO,他们都是大牛,你可以直接GOOGLE他们的主页,看他们在这块发了什么文章。 yu bin, zhu ji, zhang tong, hui zou, yuan ming, Nicolai Meinshausen, Peter Bühlmann,...

2014-11-10 15:45:37

阅读数 1022

评论数 0

深刻理解KSVD字典训练方法

在两个博客的基础上深入理解KSVD算法字典训练

2014-11-02 11:34:26

阅读数 6829

评论数 2

提示
确定要删除当前文章?
取消 删除
关闭
关闭