【用deepseek和chatgpt做算法竞赛】——华为算法精英实战营第十九期-Minimum Cost Trees_0

最近同门找我组队打2025年的“华为软件挑战杯”,他让我准备一下,刷一下“代码随想录”。我的想法是结合AI和现有的算法竞赛题,边做边学,同时做一下学习记录。我选了一个正在进行的比赛华为算法精英实战营第十九期-Minimum Cost Trees,比赛截至时间是2025年2月28日,现在的时间是16日,我们先看一下题目;

0 题目背景:

  1. 通信网络 (Communication Network) 表示为一个有向图 G (Directed Graph)。
  2. 图中的每个节点 (vertex) 代表一个通信设备或交换机。
  3. 图中的每条有向边 (directed edge, aka arc)表示从一个设备向另一个设备传输信号的通道。
  4. 源点 s (Source) 是信息的发送点。
  5. 多个目标点 (𝑡𝑖,terminals)是接收者。

1 题目简介:

给定一个有向图,要求找到1 或 2 棵从起点 s 到所有终点 t 的最小成本有向树,并根据完成程度评分。

1.1 有向图与有向树的基础概念:

有向图 (Directed Graph):节点之间的连接具有方向性,即从一个节点出发只能朝特定方向到达另一个节点。
该图来自代码随想录

例:A → B 表示从 A 到 B 有通路,但不代表 B → A 也通畅。

有向树 (Directed Tree):一种特殊的有向图,需满足以下条件:
在这里插入图片描述

  1. 连通性:任意两个节点之间有且仅有一条路径。
  2. 无环性:图中不存在从某节点出发再回到自身的路径。
  3. 唯一根节点:有向树中所有边的方向从根节点开始,扩展至所有节点。

程序示例

#include <stdio.h>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Orange--Lin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值