高等数学-对无穷小无穷大的理解

本文详细介绍了无穷小与无穷大的概念,并解释了它们并非具体的数值,而是以函数形式存在的数学概念。无穷小是指当函数值无限接近于0的情况,而无穷大则指函数值的绝对值可以无限增大。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1)      无穷小:

a)      无穷小不是一个确定的数,而是一个函数的存在

                                i.           只要是某个确定的数(>0),那么就肯定存在比它更小的数,所以不能说无穷小是确定的某个数

                               ii.           无穷是一个函数的存在。函数的自变量在无限靠近某一点,对应的函数值也就无限的接近某一个确定的值,这个值就是极限,当极限=0时,就称F(x)为当(X->)(或X->)时的无穷小。(即满足相关条件的F(x)是无穷小)

b)      0可以作为无穷小的唯一的常数

2)      无穷大:

a)      无穷大不是一个确定的数,是以函数的形式存在

                                i.           只要是确定的某个很大的数,那就会有更大的数,所以无穷大不是某个确定的数

                               ii.           无穷大是以函数的形式存在。函数自变量X在某个区间内,函数有定义,取任意的M> 0 ,都有| F(x)| > M。称F(x)为当(X->)(或X->)时的无穷小。(即满足相关条件的F(x)是无穷大) 

3)      重要的一点:无穷大或者无穷小都不是确定的某个数,而是以函数的形式存在着

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值