1) 无穷小:
a) 无穷小不是一个确定的数,而是一个函数的存在
i. 只要是某个确定的数(>0),那么就肯定存在比它更小的数,所以不能说无穷小是确定的某个数
ii. 无穷是一个函数的存在。函数的自变量在无限靠近某一点,对应的函数值也就无限的接近某一个确定的值,这个值就是极限,当极限=0时,就称F(x)为当(X->)(或X->)时的无穷小。(即满足相关条件的F(x)是无穷小)
b) 0可以作为无穷小的唯一的常数
2) 无穷大:
a) 无穷大不是一个确定的数,是以函数的形式存在
i. 只要是确定的某个很大的数,那就会有更大的数,所以无穷大不是某个确定的数
ii. 无穷大是以函数的形式存在。函数自变量X在某个区间内,函数有定义,取任意的M> 0 ,都有| F(x)| > M。称F(x)为当(X->)(或X->)时的无穷小。(即满足相关条件的F(x)是无穷大)
3) 重要的一点:无穷大或者无穷小都不是确定的某个数,而是以函数的形式存在着